
MATHEMATICAL PROOF OF THE MANDEL-CRYER EFFECT IN1

POROELASTICITY∗2
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Abstract. We consider Mandel’s problem from poroelasticity, which describes the behaviour of a water saturated4
porous sample being sandwiched between two rigid plates. It was observed, both computationally and experimentally,5
that the pore pressure in the center of the sample increases for some time and decreases later. This is known as the6
Mandel-Cryer effect.7

It is the purpose of this paper to provide a rigorous mathematical setting for Mandel’s problem and for the8
corresponding Mandel-Cryer effect. We first formulate non-standard linear parabolic problems for the volume strain9
and the fluid pressure. These problems admit ”explicit” solutions in terms of Fourier series. Introducing the abstract10
variational parabolic formulation with appropriate spaces, the Fourier series are shown to converge strongly.11

The main result is the mathematical proof of the Mandel-Cryer effect. Here we use the Laplace Transform applied12
to the pressure equation. We write the transformed pressure in such a way, that a Tauberian type of result applies to13
its time derivative. From this the Mandel-Cryer effect is immediate.14
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Fig. 1. Geometrical setup of Mandel’s problem. Because of symmetry we consider only the right-upper quarter
of the domain.
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2 C.J. VAN DUIJN AND A. MIKELIĆ

1. Introduction. In poroelasticity one describes, in essence, the behaviour of a deformable17

porous skeleton filled with a fluid. In it’s simplest setting, the skeleton behaves linearly elastic18

and the fluid and grains are incompressible. Pioneering references are Biot[4], Terzaghi[21] and19

more recently Coussy[6] and Verruijt[23]. The equations describing poroelastic behaviour involve20

the skeleton displacement and the fluid pressure. They are coupled, time dependent and often21

multi-dimensional. Hence it is not straightforward to solve them numerically, let alone analytically.22

However, there is a well-known problem, called Mandel’s problem (Mandel [15]), which allows for23

an explicit solution. The paper is devoted to Mandel’s problem and the corresponding behaviour of24

the fluid pressure.25

In Mandel’s problem one considers an infinitely long rock sample having a rectangular cross26

section as shown on Figure 1. The sample is fully water saturated and sandwiched at top and27

bottom by two rigid, frictionless plates that act as no-flow boundaries for the fluid. Along the plates28

a uniform load of 2F [Pa], where [∗] denotes the unit, is applied at t = 0+. This load is maintained29

at its constant value for all t > 0. The lateral boundaries {x = ±a } are drained and stress free. The30

sample is forced to be in plain strain conditions by preventing any deformation in the perpendicular31

direction. By symmetry, we may restrict our considerations to the upper right quadrant32

(1.1) Ω = {(x, z) : 0 < x < a, 0 < z < h }.33

When the physical parameters of the model are constant, Mandel’s problem admits an explicit34

solution that expresses the fluid pressure and the volume strain, corresponding to the effective solid35

skeleton displacement, in terms of infinite series. For this reason it is used as a benchmark for testing36

the validity of numerical simulations (Phillips [17], Phillips & Wheeler [18]).37

The explicit series solution attracted quite some attention in the engineering literature, see for38

instance Abousleiman et al [2], Coussy [6] or Verruijt [22]. These authors observed from the pressure39

expansion, that the pressure in the center of the sample, at {x = 0}, shows non-monotone behavior:40

for small t > 0 the pressure rises above its value at t = 0+ and decreases for large t, see Figure41

2 where a computational result is shown. This non-monotone pressure behavior is known as the42

Mandel-Cryer effect, since Cryer [7] observed similar behaviour for the pressure in the centre of a43

consolidating poroelastic sphere. Later de Leeuw [11] studied an equivalent cylindrical problem, see44

also Verruijt [22]. The Mandel-Cryer effect has been confirmed by laboratory experiments (Gibson,45

Knight & Taylor [12] and Verruijt [24]), and field tests (the Noordbergum effect (Verruijt [22],46

Rodrigues [19])).47

The purpose of this paper is to gain a better understanding of the Mandel-Cryer effect. We48

explain by means of rigorous mathematical techniques the reason of this non-monotone pressure49

behaviour.50

Starting point is the setting in which both fluid and grains are incompressible, the porous51

medium is homogeneous and isotropic and gravity can be disregarded. Then, as in Coussy [6] or52

Verruijt [22], the fluid mass balance reads53

∂tE + div q = 0,(1.2)

E = div u,(1.3)

q = −K
ηf
∇p,(1.4)

 in Ω and for t > 0,

54

where E [−] denotes volume strain, q = (qx, qy) [m/s] fluid discharge, u = (ux, uz) [m] skeleton55

displacement, K [m2] intrinsic scalar permeability, ηf [Pas] fluid viscosity and p[Pa] fluid pressure.56

Concerning the notation, ∂∗ denotes the partial derivative with respect to ∗ and BA the A-th57

component of the (vectorial or tensorial) entry B.58

This manuscript is for review purposes only.



JUSTIFICATION OF MANDEL-CRYER’S EFFECT 3

0 5 · 10−2 0.1 0.15 0.2 0.25
0.8

0.85

0.9

0.95

1

1.05

t

p
(0
,t

)

Fig. 2. Behavior of dimensionless pressure at the centre of the sample as a function of dimensionless time,
showing the Mandel-Cryer effect. Here Poisson’s ratio is ν = 1/3, (λ+ 2µ)/µ = 4. This curve is constructed from a
Laplace Transform based approximation for small t and the Fourier approximation (2.27)-(2.30) for larger values of
t.

The momentum balance is given by Biot’s formulation (Biot [5]),59

−div σ = 0,(1.5)60

σ = 2µe(u) + (λE − αp)I.(1.6)6162

Here σ[ Pa ] is the total stress tensor, µ[ Pa ] and λ[ Pa ] the Lamé parameters, e(u) [−] =63
1

2
(∇u +∇τu) the linearized strain tensor, I the identity tensor and α ∈ (0, 1] Biot’s effective stress64

parameter. In the engineering literature (Abousleiman et al [2] or Verruijt [22]), one often writes65

α = 1 −KB/Kg, where KB is the drained bulk modulus and Kg the bulk modulus of the grains.66

Since they are assumed incompressible, we have Kg = ∞ and thus α = 1. Therefore, we replace67

(1.6) by68

(1.7) σ = 2µe(u) + (λE − p)I.69

Along the boundary of Ω we have for all t > 0 the Mandel conditions:70

{x = 0} : ux = 0, σxz = 0 and ∂xp = 0;(1.8)71

{x = a} : σxz = 0, σxx = 0 and p = 0;(1.9)72

{z = 0} : uz = 0, σxz = 0 and ∂zp = 0;(1.10)73

{z = h} : uz = f(t),

∫ a

0

σzz dx = −F, σxz = 0 and ∂zp = 0.(1.11)74
75

Here, f(t) is the unknown displacement at the top of the sample and F is the total load on Ω.76

Initially, at t = 0, we have77

(1.12) E|t=0 = 0 in Ω.78

The plan of the paper is as follows. In Section 2, we reduce the two-dimensional Mandel problem79

(1.2)-(1.12) to one-dimensional non-standard parabolic problems for the volume strain E and the80
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4 C.J. VAN DUIJN AND A. MIKELIĆ

pressure p. In this reduction, E = E(x, t) and p = p(x, t) only. We further show that (1.12) implies81

(1.13) p|t=0 =
F

2a
in Ω.82

We present the Fourier expansion for E and p, and discuss the corresponding Hilbert spaces. In83

Section 3 we consider the functional analytic setting of the E-problems and show that the Fourier84

expansion represents its unique solution. In Section 4 it is shown that ∂xp(a, t) = O(t−1/2) and85

||∂xp(·, t)||L2(0,a) = O(t−1/4) as t ↘ 0. This corresponds to the numerical findings of Phillips [17]86

and Phillips & Wheeler [18]. The main result of this section is the demonstration of the Mandel-Cryer87

effect by means of the inverse distributional Laplace Transform.88

The conclusions are presented in Section 5.89

2. Mandel problem as non-standard parabolic problem. In this section we present the90

main steps of the derivation of Mandel’s problem. We follow in essence the work of Abousleiman et91

al [2], Coussy[6] and Verrujt [22]. Since the plates are rigid, impervious and frictionless with respect92

to the rock sample and since the lateral boundary conditions are constant, we look for a solution of93

problem (1.2)-(1.12), that describes a configuration in which horizontal planes in the sample move94

undistorted downwards (F > 0), vertical planes move undistorted sideways and in which the fluid95

flow is parallel to the plates. In terms of the displacements this means that the vertical component96

uz does not depend on x and the horizontal component ux does not depend on z. Hence, we seek a97

solution that satisfies98

(2.1)
ux = ux(x, t),
uz = uz(z, t),
qz = 0,

 in Ω and for t > 0.99

These assumptions imply100

(2.2)

σxz = 0,
p = p(x, t),
exx = ∂xux = exx(x, t),
ezz = ∂zuz = ezz(z, t),

 in Ω and for t > 0.101

Balancing forces in x−direction gives

0 = ∂xσxx + ∂zσxz = ∂xσxx.

Then boundary condition (1.9) implies102

(2.3) σxx = 2µexx + λE − p = 0,103

and consequently104

(2.4) E = E(x, t) in Ω and for t > 0.105

Writing (2.3) as106

(2.5) (2µ+ λ)E − p = 2µezz,107

we deduce that108

(2.6) ezz = ezz(t) in Ω and for t > 0.109

This manuscript is for review purposes only.



JUSTIFICATION OF MANDEL-CRYER’S EFFECT 5

Next consider, using again expression (2.3),110

σzz = 2µezz + λE − p = (2µ+ λ)E − p− 2µexx = 2(µ+ λ)E − 2p.(2.7)111112

Hence113

(2.8) σzz = σzz(x, t) in Ω and for t > 0.114

Integrating (2.5) and (2.7) results in

2µaezz(t) = (2µ+ λ)

∫ a

0

E dx−
∫ a

0

p dx

and

−F = 2(µ+ λ)

∫ a

0

E dx− 2

∫ a

0

p dx.

Combining these expressions and (2.5) gives the following relation between the fluid pressure and115

the volume strain:116

(2.9) p = (2µ+ λ)E − µ

a

∫ a

0

E dx+
F

2a
,117

in Ω and for t > 0. Hence we have the pressure initial condition118

(2.10) p|t=0+ =
F

2a
.119

Substituting (2.9) into equations (1.2), (1.4) and the boundary conditions at x = 0 and x = a, yields120

the following parabolic problem for the volume strain121

∂tE −
(λ+ 2µ)K

ηf
∂xxE = 0 for 0 < x < a, t > 0,(2.11)122

∂xE(0, t) = 0 for t > 0,(2.12)123

p(a, t) = 0⇒ (λ+ 2µ)E(a, t) = − F
2a

+
µ

a

∫ a

0

E(s, t) ds for t > 0,(2.13)124

E(x, 0) = 0 for 0 < x < a.(2.14)125126

Using again expression (2.9), this problem can be rewritten straightforwardly in terms of the fluid127

pressure. Then it reads128

∂tp−
(λ+ 2µ)K

ηf
∂xxp = −µK

aηf
∂xp(a, t) for 0 < x < a, t > 0,(2.15)129

∂xp(0, t) = p(a, t) = 0 for t > 0,(2.16)130

p(x, 0+) =
F

2a
for 0 < x < a.(2.17)131

132

Remark 1. (i) The pressure boundary condition (2.13) yields a non-local boundary condition133

for E. In the pressure formulation a source term of unknown strength appears in the right hand side134

of (2.15). In this respect, both formulations yield non-standard problems.135

(ii) Relation (2.9) expresses p in terms of E and

∫ a

0

E(s, t) ds. Likewise, a relation can be136

deduced that expresses E in terms of p and

∫ a

0

p(s, t) ds. It reads137

(2.18) (2µ+ λ)E = p+
µ

a(µ+ λ)

∫ a

0

p(s, t) ds− 2µ+ λ

µ+ λ

F

2a
.138
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6 C.J. VAN DUIJN AND A. MIKELIĆ

For convenience we introduce the scaling139

x :=
x

a
, t :=

(λ+ 2µ)K

a2ηf
, p :=

2a

F
p,140

and the variable141

E =
F

2aµ
(w − µ

λ+ µ
).142

Then for w we have the following volume strain problem

∂tw = ∂xxw for 0 < x < 1, t > 0,(2.19)

∂xw(0, t) = 0, w(1, t) =
µ

λ+ 2µ

∫ 1

0

w(s, t) ds for t > 0,(2.20)

w(x, 0) =
µ

λ+ µ
for 0 < x < 1.(2.21)

 (PV S)

143

For the scaled pressure we find

∂tp = ∂xxp−
µ

2µ+ λ
∂xp(1, t) for 0 < x < 1, t > 0,(2.22)

∂xp(0, t) = 0, p(1, t) = 0 for t > 0,(2.23)

p(x, 0) = 1 for 0 < x < 1.(2.24)

 (PP )

144

In terms of the scaled variables, relation (2.9) becomes145

(2.25) p(x, t) =
λ+ 2µ

µ
w(x, t)−

∫ 1

0

w(s, t) ds.146

The problem for the volume strain (PVS), with the nonlocal boundary condition at x = 1, and for the147

pressure (PP), with the unknown source term ∂xp(1, t), was not written as such in the engineering148

literature. Abousleiman et al [2] and Coussy [6] directly write the problem in terms of a Fourier149

expansion, while Verruijt[22] writes the pressure equation directly in terms of the Laplace transform.150

Remark 2. (Abousleiman et al [2], Verruijt [22]) The elastic parameters in problems (PVS)
and (PP) can be expressed in terms of Poisson’s ratio ν:

µ

λ+ 2µ
=

1

2

1− 2ν

1− ν
and

µ

λ+ µ
= 1− 2ν.

As in Abousleiman et al [2] or Coussy [6], the following Fourier expansions are found as solutions of151

(PVS) and (PP):152

(2.26) w(x, t) =

∞∑
n=1

Ane
−α2

nt en(x)153

and154

(2.27) p(x, t) =
λ+ 2µ

µ

∞∑
n=1

An
(
en(x)− en(1)

)
e−α

2
nt.155

This manuscript is for review purposes only.



JUSTIFICATION OF MANDEL-CRYER’S EFFECT 7

Here {αn}∞n=1 are the positive roots of156

tanαn =
λ+ 2µ

µ
αn,(2.28)157

en(x) := cos(αnx),(2.29)158159

and160

An = 2
cosαn

1− λ+2µ
µ cos2 αn

.(2.30)161

162

163

Remark 3. Let γn = (n− 1/2)π − αn. Then one verifies that

γn > 0, γn+1 < γn < . . . · · · < γ1 ∈ (0, π/2) for n ∈ N

and lim
n→∞

γn = 0. Consequently, the denominator in (2.30) is strictly positive.164

The numbers {βn = α2
n}∞n=1 and the functions {en}∞n=1 are eigenvalues and eigenfunctions of165

the nonlocal spectral boundary value problem166

−u′′ = βu for 0 < x < 1,(2.31)167

u′(0) = 0, u(1) =
µ

λ+ 2µ

∫ 1

0

u dx.(2.32)168
169

Integrating (2.31) yields

−u′(1) = β

∫ 1

0

u dx.

Hence, the nonlocal boundary condition at x = 1 can be replaced by170

(2.33) − u′(1) =
λ+ 2µ

µ
βu(1).171

Multiplying the equation for {βn, en} by em and integrating the result in (0, 1) gives∫ 1

0

e′ne
′
m dx = βn

∫ 1

0

enem dx+ e′n(1)em(1).

Using (2.32) and (2.33), this expression can be written as172

(2.34)

∫ 1

0

e′ne
′
m dx = βn

{∫ 1

0

enem dx− µ

λ+ 2µ

∫ 1

0

en dx

∫ 1

0

em dx
}
.173

Similarly,174

(2.35)

∫ 1

0

e′ne
′
m dx = βm

{∫ 1

0

enem dx− µ

λ+ 2µ

∫ 1

0

en dx

∫ 1

0

em dx
}
.175

Next we introduce the space176

W =
{
L2(0, 1), equipped with inner product < u, v >:=177

(u, v)L2(0,1) −
µ

λ+ 2µ

∫ 1

0

u dx

∫ 1

0

v dx
}
.178

179

This manuscript is for review purposes only.



8 C.J. VAN DUIJN AND A. MIKELIĆ

Expressions (2.34)-(2.35) imply that {en}∞n=1 are orthogonal in W .180

Further,
||u||W =

√
< u, u > is equivalent to ||u||L2(0,1),

since181

(2.36)
λ+ µ

λ+ 2µ
||u||2L2(0,1) ≤ ||u||

2
W ≤ ||u||2L2(0,1)182

for all u ∈ L2(0, 1).183

Finally we observe that184

(en − en(1), em)L2(0,1) = (en, em)L2(0,1) − en(1)

∫ 1

0

em dx185

= (en, em)L2(0,1) −−
µ

λ+ 2µ

∫ 1

0

en dx

∫ 1

0

em dx186

=< en, em >,(2.37)187188

This equality implies that the expansion of the volume strain in W is equivalent to the expansion189

of the pressure in L2(0, 1), since190

µ

λ+ 2µ
(em, 1)L2(0,1) =

+∞∑
n=1

An(en − en(1), em)L2(0,1) =

+∞∑
n=1

An < en, em >=191

Am||em||2W =
µ

λ+ µ
< em, 1 > .(2.38)192

193

3. Functional analytic setting. At this point, it is not clear if {en}∞n=1 is really a basis for194

W and if {βn}∞n=1 is the entire spectrum. For this reason we give a rigorous mathematical argument195

that completes the computations.196

To recast eigenvalue problem (2.31)- (2.33) in an abstract framework we introduce the space197

(3.1) V = { u ∈ H1(0, 1) : u(1)− µ

λ+ 2µ

∫ 1

0

u dx = 0}.198

Clearly, V is a closed subspace of H1(0, 1).199

Based on (2.34)-(2.35), we consider the variational formulation:200

Find u ∈ V and β ∈ R, u 6= 0, such that201 ∫ 1

0

u′(x)ϕ′(x) dx = β{
∫ 1

0

u(x)ϕ(x) dx− µ

λ+ 2µ

∫ 1

0

u(x) dx

∫ 1

0

ϕ(x) dx}, ∀ϕ ∈ V.(3.2)202
203

Then we have204

Lemma 3.1. Any solution {u, β} of (3.2) solves problem (2.31)- (2.33).205

Proof. Let {u, β} satisfy (3.2) and let ϕ ∈ C∞0 (0, 1) with
∫ 1

0
ϕ dx = 0. Then ϕ ∈ V and from

(3.2), ∫ 1

0

u′(x)ϕ′(x) dx = β

∫ 1

0

u(x)ϕ(x) dx,

or, in distributional sense,

< −u′′ − βu, ϕ >D′(0,1)= 0 ∀ϕ ∈ C∞0 (0, 1),

∫ 1

0

ϕ dx = 0.

This manuscript is for review purposes only.



JUSTIFICATION OF MANDEL-CRYER’S EFFECT 9

This implies, see [8, Appendix ”Distributions”],206

(3.3) − u′′ − βu = C(= constant) in (0, 1).207

Hence u ∈ C∞[0, 1]. Again from (3.2), after integration by parts,

u′(1)ϕ(1)− u′(0)ϕ(0) =

∫ 1

0

(u′′ + βu)ϕ dx− β µ

λ+ 2µ

∫ 1

0

u(x) dx

∫ 1

0

ϕ(x) dx.

Taking ϕ ∈ V , with ϕ(1) =
µ

λ+ 2µ

∫ 1

0

ϕ(x) dx = 0, and using (3.3), we find:

u′(0) = 0.

Hence for any ϕ ∈ V

u′(1)ϕ(1) = −C
∫ 1

0

ϕ dx− β µ

λ+ 2µ

∫ 1

0

u(x) dx

∫ 1

0

ϕ(x) dx

or208

(3.4) u′(1) + β

∫ 1

0

u(x) dx+
λ+ 2µ

µ
C = 0.209

On the other hand, integrating (3.3),210

(3.5) u′(1) + β

∫ 1

0

u(x) dx+ C = 0.211

Then (3.4) and (3.5) imply C = 0 and equation (2.31) results. Since u ∈ V , the second condition in212

(2.32) is fulfilled as well. Integrating (2.31) implies (2.33).213

Writing (3.2) as
a(u, ϕ) = β < u, ϕ > ∀ϕ ∈ V,

we note that214

(i) the injection of V into W is continuous, dense and compact;215

(ii) a is a continuous bilinear form, which is symmetric and coercive in that sense, see (2.36),

a(ϕ,ϕ) + ||ϕ||2W ≥
λ+ µ

λ+ 2µ
||ϕ||2H1(0,1) =

λ+ µ

λ+ 2µ
||ϕ||2V

for all ϕ ∈ V .216

Assertion (i) is a direct consequence of the fact that any bounded sequence in V has a convergent217

subsequence in L2(0, 1) (by Rellich’s theorem) and that L2(0, 1) and W are equivalent (by (2.36)).218

Hence, the injection is compact. The inequality between norms of V and W guarantees continuity of219

the injection. Finally, the density of V in L2(0, 1) follows from the discussion in the proof of Lemma220

3.1.221

Then the variational spectral theory, see [9, Chapter 8], implies that problem (3.2) has a count-222

able number of eigenvalues {βn}∞n=1 such that −1 ≤ β1 ≤ β2 ≤ . . . , with βn →∞ as n→ +∞. The223

problem has only discrete eigenvalues and the corresponding eigenfunctions form an orthonormal224

basis for the space W and a basis for V . Obviously, β1 ≥ 0 and we set αn =
√
βn. The boundary225

condition at x = 1, rules out β1 = 0. Thus indeed {β2
n}∞n=1 is the entire spectrum and {en}∞n=1 is226

an orthogonal basis in W .227

This manuscript is for review purposes only.



10 C.J. VAN DUIJN AND A. MIKELIĆ

Next we write (PVS) as an abstract variational parabolic problem. Let T > 0, arbitrarily chosen,228

and let V ′ denote the dual of V . Then it reads229

Find w ∈ L2(0, T ;V ) ∩ C([0, T ];W ), with ∂tw ∈ L2(0, T ;V ′), such that230

d

dt
(w(t), ϕ)W + a(w(t), ϕ) = 0, ∀ϕ ∈ V and for almost all t ∈ [0, T ];(3.6)231

w(0) =
µ

λ+ µ
∈W.(3.7)232

233

234

Theorem 3.2. The abstract problem (3.6)-(3.7) has a unique solution. It is given by the Fourier235

expansion (2.26), (2.28)-(2.30).236

Proof. The proof is a direct consequence the properties of the spaces V and W (continuous
and dense injection of V in W ) and continuity and coercivity of the bilinear form a. Details of the
existence and uniqueness proof for the classical abstract variational theory are given in Dautray &
Lions [10, Chapter 18] or Wloka [25]. In the existence part of the proof one uses a finite dimensional
approximation with respect to the basis {en}∞n=1 in W . Hence the Fourier expansion applies and w
is given by (2.26). This series converges strongly in L2(0, T ;V ) ∩ C([0, T ];W ), because the partial
sums represent a Cauchy sequence in that space. Since

lim
t↘0

w(1, t) =
µ2

(λ+ 2µ)(λ+ µ)
6= µ

λ+ µ

a Gibbs effect near the corner point (x = 1, t = 0) may occur.237

Corollary 3.3. Rescaled and shifted volume strain w satisfies w ∈ C∞
(
[δ, T ]× [0, 1]), ∀δ > 0.238

4. The Mandel-Cryer effect. The purpose of this section is to demonstrate rigorously the239

Mandel-Cryer effect: i.e. the increase of the pressure in the center of the sample, at {x = 0}, for240

small times.241

Let us first consider the pressure equation (2.22). Its unique solution is given by (2.25), where242

w is the Fourier series (2.26), or directly by the modified Fourier series (2.27). Using (2.27)-(2.30)243

we compute244

(4.1) ∂xp(1, t) = −2

∞∑
n=1

sin2 αn

1− λ+2µ
µ cos2 αn

e−α
2
nt < 0245

and246

(4.2)
d

dt

(
∂xp(1, t)

)
= 2

∞∑
n=1

α2
n sin2 αn

1− λ+2µ
µ cos2 αn

e−α
2
nt > 0,247

for all t > 0. Hence −∂xp(1, t) acts as a source term in (2.22), whose strength decreases in time.248

Thus one might expect a pressure increase for small t > 0. On the other hand, integrating equation249

(2.22) in x ∈ (0, 1), gives for any t > 0,250

(4.3)
d

dt

∫ 1

0

p(x, t) dx =
λ+ µ

λ+ 2µ
∂xp(1, t) < 0.251

Hence the mean decreases in time. Furthermore, directly from Fourier series (2.27),252

(4.4) lim
t→∞

p(x, t) = 0, uniformly in 0 ≤ x ≤ 1.253
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Therefore the behavior of the pressure is a priori not clear and needs to be investigated.254

We consider the Laplace transform of the pressure as starting point. Note that the Laplace255

transform was also used in the work of Verruijt [22].256

We first consider the transformed volume strain, i.e. L(w(x, t)) = w(x, s) with s > 0, satisfying257

equation (2.19), initial condition (2.21) and from (2.20) the Neumann condition at x = 0. This258

yields259 
d2

dx2
w = sw − µ

µ+ λ
for 0 < x < 1,

d

dx
w|x=0 = 0.

260

and thus261

(4.5) w(x, s) = C cosh(x
√
s) +

µ

µ+ λ

1

s
262

for 0 < x < 1 and s > 0. Here C is a constant to be determined below. Using (2.25), the Laplace
transform of the pressure reads

p(x, s) =
λ+ 2µ

µ
w(x, s)−

∫ 1

0

w(y, s) dy.

Substituting (4.5) gives

p(x, s) =
1

s
+ C

λ+ 2µ

µ
cosh(x

√
s)− C√

s
sinh
√
s

for 0 < x < 1 and s > 0. Now choosing C such that p(1, s) = 0, yields263

(4.6) p(x, s) =
1

s
+

1

s

λ+2µ
µ cosh(x

√
s)− 1√

s
sinh
√
s

1√
s

sinh
√
s− λ+2µ

µ cosh
√
s
.264

Thus265

(4.7) L
(
p(x, t)− χR+

)
=

1

s

λ+2µ
µ cosh(x

√
s)− 1√

s
sinh
√
s

1√
s

sinh
√
s− λ+2µ

µ cosh
√
s
,266

where

χR+(t) =

{
1, for t > 0,
0, for t < 0.

4.1. Behaviour of ∂xp(1, t) as t↘ 0. Expression (4.7) implies267

(4.8) L
(
∂xp(x, t)

)
=

1√
s

λ+2µ
µ sinh(x

√
s)

1√
s

sinh
√
s− λ+2µ

µ cosh
√
s

268

for 0 ≤ x ≤ 1, and thus269

(4.9) L
(
∂xp(1, t)

)
=

1√
s

λ+2µ
µ sinh

√
s

1√
s

sinh
√
s− λ+2µ

µ cosh
√
s

270
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for all s > 0. After some rearrangements, expression (4.9) can be written as271

L
(
∂xp(1, t)

)
= − 1√

s
+G(s)272

or273

L
(
∂xp(1, t) +

1√
πt
χR+

)
= G(s),(4.10)274

275

where276

(4.11) G(s) =
1√
s

λ+2µ
µ (1− tanh

√
s) + 1√

s
tanh

√
s

− 1√
s

tanh
√
s+ λ+2µ

µ

.277

Since
λ+ 2µ

µ
> 2,

1√
s

tanh
√
s < 1, and tanh

√
s < 1, we have

G : R+ → R+ is well defined.

The following estimates hold.278

Lemma 4.1. There exists a constant M > 0 such that for all s > 0279

(i) sG(s) ≤M ;280

(ii) | d
ds

(√
sG(s)

)
| ≤Ms−3/2.281

Proof. (i) Directly from (4.11)

sG(s) <

λ+ 2µ

µ
(1− tanh

√
s)
√
s+ tanh

√
s

λ+ µ

µ

<
λ+ 2µ

λ+ µ

2
√
s

e2
√
s + 1

+
µ

λ+ µ
≤M,

where we used tanh y < y and
y

ey + 1
<

1

e
for all y > 0.282

(ii) Setting y =
√
s, we note that (1− tanh y)y and its derivatives have exponential decay as

y →∞. Hence for

yG(y2) =

λ+2µ
µ (1− tanh y)y + tanh y

− tanh y + λ+2µ
µ y

we have

| d
dy

(yG(y2))| ≤ C

(λ+2µ
µ − tanh y

y )2y2
<
( µ

λ+ µ

)2 C
y2
.

Using now
d

ds

(√
sG(s)

)
=

1

2
√
s

d

d
√
s

(√
sG(s)

)
estimate (ii) is immediate.283

Then we have284

Lemma 4.2. There exists M > 0 such that for all s > 0

|s2 d
ds
G(s)| ≤M.
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Proof. Using

s3/2
d

ds

(√
sG(s)

)
= s2

d

ds
G(s) +

s

2
G(s),

the estimate is a direct consequence of Lemma 4.1.285

We are now in a position to apply the following result, which is due to Prüss (see Arendt et al [3,286

Corollary 2.5.2])287

Prüss’s Proposition. Let X be a Banach space and let q : {<z > 0} → X be holomorphic.

Then the following holds: if there exists M > 0 such that ||zq(z)||X ≤ M and ||z2 d
dz
q(z)||X ≤ M

for {<z > 0}, then there exists a bounded function f ∈ C((0,+∞);X) such that

q(z) =

∫ ∞
0

e−ztf(t) dt for <z > 0.

In our case G : R+ → R+ is smooth. In addition, with s ∈ C,

| − sinh s+
λ+ 2µ

µ
s cosh s|2 ≥ Cωe2<s

(
(
λ+ 2µ

µ
<s− 1)2 + (

λ+ 2µ

µ
=s)2

)
, ∀s, <s > ω > 0

for some real number ω sufficiently large. Hence G is holomorphic in {<s > ω > 0}, taking values in288

C. Thus X = C. Furthermore, the proof of boundedness of the norms ||sG(s)||X and ||s2 d
ds
G(s)||X289

is analogous to real case, but we need that <s > ω > 0. Then Prüss’s Proposition applies, but with290

e−ωtf(t) being bounded.291

As a result we have292

Proposition 4.3. There exists g ∈ C((0,+∞);R), with sup
t>0
|e−ωtg(t)| < +∞, such that

∂xp(1, t) = − 1√
πt

+ g(t) for all t > 0.

4.2. Behaviour of t1/4||∂xp(·, t)||L2(0,1) as t ↘ 0. The singular nature of ∂xp(1, t) as t ↘
0 clearly influences the behavior of the norm ||∂xp(·, t)||L2(0,1) as t ↘ 0. This was investigated
numerically by Phillips [17] and Phillips & Wheeler [18], who used a combination of mixed and
continuous Galerkin finite elements to discretize the poroelasticity equations. They established the
behaviour ([17] page 141, formulas (6.1)-(6.2))

||∂xp(·, t)||2L2(0,1) ≈ O(t−0.488) and ||∂xxp(·, t)||2L2(0,1) ≈ O(t−1.447), as t↘ 0.

As the following analytical result shows, this is amazingly accurate:293

Proposition 4.4. lim
t↘0
||t1/4∂xp(·, t)||L2(0,1) = (2π)−1/4.294

Proof. Using Proposition 4.3, we write the pressure equation (2.22) in problem (PP) as295

∂tp− ∂xxp =
µ

2µ+ λ

1√
πt
− µ

2µ+ λ
g(t) for 0 < x < 1, t > 0,(4.12)296

297

for some g ∈ C([0, 1]×[0, T ]). Thus next to the incompatibility of the initial and boundary conditions
at x = 1, the right hand side of (4.12) has a t−1/2 singularity at t = 0+. Further, we note that the
global regularity of p is less than

w =
µ

µ+ λ
+

2aµ

F
E ∈ L2(0, T ;V ) ∩ C([0, T ],W ).
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14 C.J. VAN DUIJN AND A. MIKELIĆ

The idea is to search for p in the form298

(4.13) p(x, t) = u(x, t) +
µ

2µ+ λ

√
t

π
− v(x, t)− z(x, t),299

where300

(4.14) u(x, t) =
2√
π

∫ 0

η/2

e−y
2

dy, η =
x− 1√

t
< 0,301

satisfies302

(4.15)

 ∂tu− ∂xxu = 0 in x < 1, t > 0,
u(1, t) = 0 for t > 0,
u(x, 0) = 0 for x < 1

303

and304

(4.16)
2µ+ λ

2µ

√
π

t
v(x, t) = h(η) =

2√
π

∫ η/2

−∞
e−y

2(
1− η2

4y2
)1/2

dy.305

The function h is chosen to satisfy the boundary value problem306

(4.17)

{
h′′ +

η

2
h′ =

1

2
h for η < 0,

h(0) = 1, h(−∞) = 0
307

and its form corresponds to the representation h(η) = U( 3
2 ,

η√
2
)e−

1
8η

2

, where U(a, z) is the parabolic

cylinder function (see Abramowitz et al [1, Chapter19] or Temme [20, pages 175-179]). We do not
dwell on the subject but only remark than h can be rewritten in the more convenient form

h(η) = − η

2
√
π

∫ ∞
1

e−η
2y/4(y − 1)1/2

dy

y
, η < 0.

Then h′ is bounded and positive and h′′ is positive. A direct computation shows that h satisfies308

problem (4.17). Finally, v(x, t) =
2µ

2µ+ λ

√
t

π
h(
x− 1√

t
) satisfies309

(4.18)


∂tv − ∂xxv = 0 in x < 1, t > 0,

v(1, t) =
2µ

2µ+ λ

√
t

π
for t > 0,

v(x, 0) = 0 for x < 1.

310

Then z is given by311

(4.19)


∂tz − ∂xxz =

µ

2µ+ λ
g(t) for 0 < x < 1, t > 0,

z(1, t) = 0 and ∂xz(0, t) = a(t) for t > 0,
z(x, 0) = 0 for 0 < x < 1.

312

Here a(t) = ∂xu(0, t)− ∂xv(0, t) = − 1√
πt
e−1/(4t)− 2µ

2µ+ λ

1√
π
h′(− 1√

t
) ∈ C∞[0,+∞) and a(0) = 0.313
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The change of the unknown z = Z + (x− 1)a(t) gives314

(4.20)


∂tZ − ∂xxZ =

µ

2µ+ λ
g(t)− (x− 1)a′(t) ∈ C([0, 1]× [0, T ]) for 0 < x < 1, t > 0,

Z(1, t) = 0, and ∂xZ(0, t) = 0 for t > 0,
Z(x, 0) = 0 for 0 < x < 1.

315

We extend Z to an even function Z̃ on (−1, 1). Then Z̃ satisfies the heat equation with a continuous316

in x and t source term on (−1, 1) × (0, T ). Next, Z̃ is zero at x = −1, x = 1 and t = 0. Hence,317

we are in situation to apply the parabolic regularity theory from Ladyzenskaja et al [14, Chapter4,318

Theorem 9.1]. It gives Z̃ ∈ W 2,1
q ((−1, 1)× (0, T )), ∀q ∈ (1,+∞). Therefore, Z̃ and ∂xZ̃ are Hölder319

continuous in x and t on [−1, 1]× [0, T ]. The same property holds for z and ∂xz on [−1, 0]× [0, T ].320

Finally

lim
t↘0
||t1/4∂xp(·, t)||L2(0,1) = lim

t↘0
||t1/4∂xu(·, t)||L2(0,1) = lim

t↘0

t−1/4√
π
||e−(1−x)

2/(4t)||L2(0,1) = (2π)−1/4

and the proposition is proved.321

4.3. Non-monotone pressure at x = 0, t > 0. Using the Laplace Transform technique from322

Subsection 4.1, we are now in position to demonstrate the Mandel-Cryer effect. From (4.6) we323

deduce324

L
(
∂tp(x, t)

)
= sp(x, s)− 1 =

λ+2µ
µ cosh(x

√
s)− 1√

s
sinh
√
s

1√
s

sinh
√
s− λ+2µ

µ cosh
√
s
,325

for s > 0. Again after a bit of rearrangement we obtain at x = 0:326

L
(
∂tp(0, t)

)
=

1
λ+2µ
µ

√
s− 1

+Q(s),327

for s > ω > (
µ

λ+ 2µ
)2, where328

Q(s) =

λ+2µ
µ

√
s(cosh

√
s− sinh

√
s) + (λ+2µ

µ )2s− λ+2µ
µ

√
s

(sinh
√
s− λ+2µ

µ

√
s cosh

√
s)(λ+2µ

µ

√
s− 1)

.329

Since Q(s) is exponentially small in
√
s, we do not have to keep it in the estimates. As in Subsection330

4.1,331

(4.21) L
(
∂tp(0, t)−

µ

λ+ 2µ

1√
πt
χR+

)
=

µ
λ+2µ√

s(λ+2µ
µ

√
s− 1)

+Q(s),332

for s > ω > (
µ

λ+ 2µ
)2.333

One easily verifies that334

(i) lim
s→∞

s

µ
λ+2µ√

s(λ+2µ
µ

√
s− 1)

= (
µ

λ+ 2µ
)2;335

(ii) |s
µ

λ+2µ√
s(λ+2µ

µ

√
s− 1)

| ≤M for s > ω > (
µ

λ+ 2µ
)2. ;336

(iii) |s2 d
ds

µ
λ+2µ√

s(λ+2µ
µ

√
s− 1)

| ≤M for s > ω > (
µ

λ+ 2µ
)2. ;337
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for some M > 0.338

Again applying Prüss’s Proposition, we have339

Proposition 4.5. There exists q ∈ C((0,+∞),R), with sup
t>0
|e−ωtq(t)| <∞, ω > 0, such that

∂tp(0, t) =
µ

λ+ 2µ

1√
πt

+ q(t) for all t > 0.

Since q is bounded on [0, T ], for every T > 0, this result implies that there exists t0 > 0 such that

∂tp(0, t) > 0 for 0 < t < t0,

yielding the Mandel-Cryer effect.340

5. Conclusion. In this paper we consider Mandel’s problem (Mandel [15]) in poroelasticity.341

This problem describes the behaviour of a water saturated porous slab, that is subjected to a342

symmetrical load at top and bottom while water is drained from the lateral sides, see Figure 1. It343

was observed that the fluid pressure in the center of the sample first increases in time and decreases344

later. The behaviour is known as the Mandel-Cryer effect. Mandel’s problem received significant345

attention in the engineering literature, because it admits an explicit solution for the volume strain346

E and the pore pressure p. These solutions are given in terms of Fourier series.347

We give a rigorous mathematical foundation of the Mandel problem. To this end we first348

formulate non-standard parabolic problems for E and p. The E−problem has a nonlocal boundary349

condition at the outflow boundary x = 1 (equations (2.19)-(2.21)), the p−problem has a source350

term of unknown strength (equations (2.22)-(2.24)). The volume strain and the pore pressure are351

related through (2.25). We construct a Fourier approximation for E (and for p) and show that the352

corresponding Hilbert space, taking into account the nonlocal boundary condition at x = 1, is353

W =
{
L2(0, 1), with inner product < u, v >= (u, v)L2(0,1) −

µ

λ+ 2µ

∫ 1

0

u dx

∫ 1

0

v dx
}
,354

355

i.e. the eigenfunctions of the corresponding spectral problem form an orthogonal basis in W . We356

show, that the Fourier series converges strongly in L2(0, T ;V ) ∩ C([0, T ];W ),where the space V is357

defined in (3.1).358

The main result is the mathematical proof of the Mandel-Cryer effect. Here we use Laplace359

Transform techniques applied to the pressure equation. In particular, we formulate the transformed360

pressure in such way, that a fundamental result of Prüss [3] can be used.361

We first investigate the singular behaviour of the source term in (2.22), for which we obtain362

(5.1) ∂xp(1, t) +
1√
πt

= O(1), as t→ 0 + .363

We show that this implies364

||t1/4∂xp(·, t)||L2(0,1) = (2π)−1/4 as t→ 0 + .(5.2)365366

The exponent 1/4 is confirmed by the numerical results of Phillips [17] and Phillips & Wheeler [18],367

who found numerically the exponent 0.244.368

Using again the result of Prüss [3], it follows that there exists q ∈ C((0,∞);R), with e−ωtq369

bounded in R+ for some ω > 0, such that370

(5.3) ∂tp(0, t) =
µ

λ+ 2µ

1√
πt

+ q(t) for all t > 0.371

From this expression the increase of the pressure for small times is immediate.372
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