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Abstract

We study the gravity driven flow of two fluid phases in a one dimensional homo-
geneous porous column when history dependence of the pressure difference between
the phases (capillary pressure) is taken into account. In the hyperbolic limit, solu-
tions of such systems satisfy the Buckley-Leverett equation with a non-monotone
flux function. However, solutions for the hysteretic case do not converge to the
classical solutions in the hyperbolic limit in a wide range of situations. In par-
ticular, with Riemann data as initial condition, stationary shocks become possible
in addition to classical components such as shocks, rarefaction waves and constant
states. We derive an admissibility criterion for the stationary shocks and outline all
admissible shocks. Depending on the capillary pressure functions, flux function and
the Riemann data, two cases are identified a priori for which the solution consists of
a stationary shock. In the first case, the shock remains at the point where the initial
condition is discontinuous. In the second case, the solution is frozen in time in at
least one semi-infinite half. The predictions are verified using numerical results.

1 Introduction

In this paper we investigate gravity driven flow of two fluid phases through a homogeneous
one-dimensional porous column. We are concerned with the special case in which the
length of the column is large and no injection of fluid is present (i.e. the total flow
is zero). The corresponding mathematical model uses the well-known Buckley-Leverett
equation, see [9]. In dimensionless form it reads

∂tS + ∂xh(S) = 0. (1.1)
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Here S ∈ [0, 1] is the saturation of the wetting phase and h : [0, 1]→ [0,∞) the fractional
flow function of which a typical sketch is shown in Figure 1 (left). The space coordinate
is x and t denotes time. We solve (1.1) for t > 0 and x ∈ R, where we prescribe at t = 0
the Riemann condition

S(x, 0) =

{
ST for x < 0,

SB for x > 0,
where 0 < SB < ST < 1 are constants. (1.2)

Solutions of (1.1)–(1.2) are generally non-unique [14, Chapter 1]. To find the physically
relevant solution, we replace (1.1) by the capillary Buckley-Leverett equation

∂tS + ∂x[h(S)(1 + δ ∂xp)] = 0. (1.3)

and study the limit δ → 0. In (1.3), p is the pressure difference between the fluid phases
and δ is the dimensionless capillary number which scales inversely with the length of the
domain (reference length). Hence for large domains, (1.1) is approximated by (1.3). A
detailed derivation is given in Section 2.

To solve (1.3) a relation between S and p is assumed. In the standard equilibrium
approach, one uses

p = pc(S), (1.4)

where pc : (0, 1]→ [0,∞) is a capillary pressure function [9].
For δ > 0, let (Sδ, pδ) denote the solution of (1.2)–(1.4). The hyperbolic limit as δ → 0

yields the well known Buckley-Leverett solution of (1.1)–(1.2), comprising of constant
states separated by shocks and rarefaction waves [14, 15, 23]. In particular, shocks can
be seen as the limit of smooth, monotone travelling waves which become steeper as δ → 0
[14, 15, 32]. It is also known that the hyperbolic limit solution is independent of the
actual shape of the capillary pressure pc as long as the approximating equation (1.3) is of
convection-diffusion type [14, Chapter 3].

However, there are other more realistic capillary pressure expressions for which the
limiting (δ → 0) solution does inherit some properties of the vanishing capillarity. This
was studied in detail in [19, 31, 33, 35] for the case where (1.4) is replaced by the non-
equilibrium expression

p = pc(S)− τ∂tS,

where τ > 0 is a relaxation parameter called dynamic capillarity coefficient which at-
tributes to saturation overshoots [17, 21, 34].

In this paper we investigate the effect of hysteresis in the capillary pressure. Since pc(·)
is a single valued function of saturation only, it does not contain any information about
the history or directionality of the process. In particular, it does not distinguish between
imbibition and drainage. No hysteretic effects are present in (1.4). However, hysteresis is
known to occur in multi-phase porous media flow. This was first observed by Haines in
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Figure 1: (left) The h-S curve for water (wetting phase, viscosity 5.23 × 10−4[Pa · s])
and methane (viscosity 1.202× 10−5[Pa · s]). In reference to Section 2, the Brooks-Corey
relationship has been used for the relative permeabilities, the mobility ratio is M = 43.52
and the characteristic saturations SM , S1, S2 are marked. (right) The imbibition and
drainage capillary pressure curves and the hysteretic region H. The van Genuchten model
has been used for p

(i)
c and p

(d)
c . Details are given in the numerical section.

1930 and has been verified since by numerous experiments, some notable examples being
[22, 36]. An overview of different hysteresis models from the mathematical, modelling and
physical perspectives can be found in [8, 16, 29].

In our approach we replace (1.4) by the following hysteresis description. Let

p(i)
c , p

(d)
c : (0, 1]→ [0,∞), p(i)

c (S) < p(d)
c (S) for 0 < S < 1,

denote the imbibition and drainage capillary pressure functions, typical examples being
shown in Figure 1 (right), and let

H := {(S, p) : 0 < S ≤ 1, p(i)
c (S) ≤ p ≤ p(d)

c (S)}

be the hysteresis region in the (S, p)-plane, as indicated in Figure 1 (right). We restrict
ourselves to the well-known play-type hysteresis model, first proposed in [6], which relates
S and p via the relation

p ∈ H, and p =


p

(i)
c (S) when ∂tS > 0,

∈ [p
(i)
c (S), p

(d)
c (S)] when ∂tS = 0,

p
(d)
c (S) when ∂tS < 0.

(1.5)

The play-type model assumes that switching from drainage to imbibition, or vice versa,
occurs only along vertical scanning curves. For the rest of the study, the state when
∂tS = 0 and consequently p ∈ [p

(i)
c (S), p

(d)
c (S)] will be referred to as the undetermined
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state of the system, whereas ∂tS > 0 (consequently p = p
(i)
c (S)) and ∂tS < 0 (p = p

(d)
c (S))

will refer to the imbibition and drainage states, respectively. Other models, such as the
Lenhard-Parker model [24] and the extended play-type hysteresis model [8, 18] assume a

more complex relation between S and p when p
(i)
c (S) < p < p

(d)
c (S). We comment on the

consequences of such models in Remark 4.3.
The purpose of this paper is to construct solutions of the Riemann problem (1.1)–(1.2)

that arise as the hyperbolic limit (δ → 0) of (1.2)–(1.3) and (1.5). We demonstrate that
the occurrence of hysteresis in the vanishing capillary term, i.e. using (1.5) instead of
(1.4), gives solutions that are significantly different, specially when SB is close to 0 and
ST is close to 1. In particular, a stationary discontinuity occurs at the location where the
initial condition is discontinuous. This is illustrated in Figure 2. The magnitude of the
jump depends on the difference p

(d)
c (S)−p(i)

c (S), as will be discussed later. This behaviour
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Figure 2: Vanishing capillarity solutions of (1.1) with initial condition (1.2). Here, SB =
0.1, ST = 0.8 and t = 100. The red marked profiles show the classical solutions (for the
standard model (1.4)), whereas, the blue solid profiles show the result for the play-type

model (1.5). For the (left) plot, p
(i)
c and p

(d)
c curves are close to each other, whereas in

the (right) plot the curves are as shown in Figure 1 (right). Exact details are given later.

was mentioned briefly in Section 3.5 of [19]. A stationary discontinuity in saturation for
the classical problem (with no hysteresis) was also predicted in [2] at the interface between
two semi-infinite halves having different h and pc functions. However, the directionality
imposed by hysteresis demands an extension of their results. The saturation discontinuity
has major practical importance as the saturation distribution can change considerably if
hysteresis is present, as is evident from Figure 2.

Remark 1.1 (Vanishing capillarity method). In the mathematical literature, the method
of finding solutions of equations such as (1.1) by passing to the limit δ → 0 in (1.3)
is called the vanishing viscosity method, and was studied in classical references such as
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[13, 23]. In these papers, the notion of entropy was introduced as well. In their context,
the vanishing viscosity solution is the entropy solution. In our application, the meaning
of entropy is not clear. Renaming viscosity as capillarity, we thus rely on the vanishing
capillarity method. We call the approximate solutions (Sδ, pδ) for δ > 0 the capillarity
solutions, and the δ → 0 limit solution the vanishing capillarity solution.

Hysteresis models have been analysed exhaustively, particularly in one spatial dimen-
sion [17]. Existence and uniqueness results for the regularised play-type model are given
in [10, 12, 18, 28] and [7] respectively. A horizontal redistribution study using similarity
solutions was performed in [8]. Travelling wave analysis for hysteresis was conducted for
flow of water through soil in [5, 20, 21, 34]. For the two-phase case, travelling waves
were studied in [19] for monotone flux functions and vanishing capillarity solutions were
derived that differ significantly from the classical ones. These solutions were used to
explain the observation of stable and growing saturation plateaus in infiltration experi-
ments. Non-classical solutions for non-monotone flux functions like h were investigated in
[30], although hysteresis was not included. In [11], examples of how hysteresis influences
hyperbolic solutions in mechanics are found. The role of relative permeability hysteresis,
which is not addressed in this study, in determining the hyperbolic solutions is examined
in [1, 4, 26, 27]. However, the relation between p and S is assumed to be a linear one in
these articles. In the current study, we investigate the vanishing capillarity solutions for
the capillary hysteresis models in the non-monotone flux case and show that non-classical
behaviour such as stationary shocks may occur. Stationary discontinuities have been
studied in [2] for heterogeneous media without hysteresis and for redistribution problems
(no gravity) in [8, 25] with hysteresis. The occurrence of a stationary discontinuity due
to hysteresis in gravity driven flows is to our knowledge a novel observation.

We structure the paper as follows: In Section 2 the assumptions are stated and the
model is derived. Using travelling wave analysis, all admissible shocks, including station-
ary shocks, are derived in Section 3 for the standard and the hysteresis model. Then, in
Section 4, the admissible shocks are used to construct the vanishing capillarity solutions.
Two cases are identified when the solutions for hysteresis deviate from the classical ones.
This is determined a priori from h, p

(i)
c , p

(d)
c , SB and ST . In the first case, the solution

has a stationary discontinuity while the rest of the solution retains the structure of the
classical solutions (Section 4.2.1). The second case has no classical counterparts and the
solution is frozen in one of the semi-infinite halves (Section 4.2.2). Finally, in Section 5,
we solve (1.2)–(1.3) and (1.5) numerically for small δ > 0 and show that the solution
closely resembles our predictions.

2 Problem Formulation

We set-up the two-phase flow problem in a one-dimensional homogeneous porous domain.
The phases are assumed to be incompressible and immiscible. There is no injection at

5



the boundaries, making the flow purely counter-current and gravity driven, having zero
total flux of the combined wetting and non-wetting phases. Following [9], we consider for
each phase the mass balance equation and the corresponding Darcy Law. This yields

φ ∂tS =∂x

[
K

µw
kw(S)(∂xpw − ρwg)

]
(wetting phase), (2.1a)

φ ∂t(1− S) =∂x

[
K

µn
kn(1− S)(∂xpn − ρng)

]
(non-wetting phase). (2.1b)

For each phase α = w, n (w and n representing the wetting and the non-wetting phases
respectively), pα denotes the pressure, kα the relative permeability, µα the viscosity and
ρα the density. The porosity φ and absolute permeability K are properties of the medium
and are constant due to the assumption of homogeneity. Finally, gravity points in the
direction of positive x and g is the gravitational constant. For the remainder of the study
we assume that the wetting phase is denser than the non-wetting phase, i.e.,

ρn < ρw.

Adding the equations in (2.1) gives

∂x

[
Kkw
µw

(∂xpw − ρwg) + Kkn
µn

(∂xpn − ρng)
]

= 0,

The term inside the brackets [ ] is the total flux of the combined phases. Since no injection
takes place in the column

Kkw
µw

(∂xpw − ρwg) + Kkn
µn

(∂xpn − ρng) = 0.

Defining the capillary pressure and mobility ratio as

p := pn − pw and M := µw/µn

respectively, one obtains through rearrangement

Kkw
µw

(∂xpw − ρwg) = −K
µw

knkw
kn +M−1kw

∂xp−
Kg(ρw − ρn)

µw

knkw
kn +M−1kw

. (2.2)

To non-dimensionalise (2.1), we introduce a characteristic pressure p
ref

(taken from the
capillary pressure curves), a characteristic length L (length of column or typical observa-
tion distance) and a characteristic time t

ref
. We further define the fractional flow function

h :=
knkw

kn +M−1kw
, (2.3)

and introduce the dimensionless capillary number

δ :=
p
ref

(ρw − ρn)gL
> 0. (2.4)
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Inserting (2.2) into (2.1a), choosing t
ref

= µwφL
Kg(ρw−ρn)

, and redefining the dimensional quan-
tities as their dimensionless versions

p 7→ p
p
ref
, t 7→ t

t
ref
, x 7→ x

L
,

one obtains (1.3).
The Brooks-Corey model is commonly used for the relative permeability functions:

kα(S) = S2 for α = n,w. (2.5)

This gives the shape of h as shown in Figure 1 and properties outlined in (P2). As for p,
either (1.4) or (1.5) is used. For the capillary pressures and the fractional flow function,
following set of properties is assumed, see Figure 1. They are consistent with experimental
observations [3, 9]:

(P1) The capillary pressures p
(j)
c : (0, 1] → [0,∞), for j = i, d, are continuously dif-

ferentiable and strictly decreasing in (0, 1); p
(i)
c (S) < p

(d)
c (S) for S ∈ (0, 1) and

p
(i)
c (1) = p

(d)
c (1) = 0 (no entry pressure).

(P2) The fractional flow function h : [0, 1] → [0,∞) is smooth with h(0) = h(1) = 0.
There exists SM ∈ (0, 1) such that

h′(S) > 0 for 0 < S < SM , and h′(S) < 0 for SM < S < 1.

Moreover, there exists inflection points S1, S2 ∈ (0, 1) with 0 < S1 < SM < S2 < 1
such that

h′′(S) > 0 for {0 < S < S1} ∪ {S2 < S < 1}, and h′′(S) < 0 for S1 < S < S2.

The assumption (P1) is consistent with the van Genuchten model for capillary pressures.
For h, the Brooks-Corey model (2.5) yields

h(S) =
S2(1− S)2

M−1S2 + (1− S)2
with SM =

1

(1 +M−1/3)
. (2.6)

3 Admissible shocks

In this section we consider shock solutions of equation (1.1) that originate from smooth
solutions of (1.3). A shock is characterized by a constant left state Sl, a constant right
state Sr, and a constant speed c. They are denoted by {Sl, Sr, c} or

S(x, t) =

{
Sl for x < ct,

Sr for x > ct.
(3.1)
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We call {Sl, Sr, c} an admissible (i.e. vanishing capillarity) shock if it can be approxi-
mated, as δ → 0, by smooth solutions of (1.3) [14, 15]. To investigate this, we consider a
special class of solutions of (1.3) in the form of travelling waves:

Sδ(x, t) = S(η), pδ(x, t) = p(η), with η =
x− ct
δ

. (3.2)

Here S : R → [0, 1] is the saturation profile, p : R → [0,∞] the capillary pressure profile
and c ∈ R the wave-speed. We consider profiles that satisfy for the saturation

lim
η→−∞

S(η) = Sl, lim
η→+∞

S(η) = Sr, (3.3)

and for the pressure
p ∈ L∞(R) (bounded pressure). (3.4)

Clearly, if a smooth profile (3.2) exists and satisfies (3.3), then

S(x, t) = lim
δ→0

Sδ(x, t) = lim
δ→0

S

(
x− ct
δ

)
=

{
Sl for x < ct,

Sr for x > ct.

Substituting (3.2) into (1.3) gives

−cS′ + [h(S)(1 + p′)] = 0 in R, (3.5)

where primes denote differentiation. Integrating this expression yields

−cS + h(S)(1 + p′) = A = constant in R. (3.6)

If S satisfies (3.3), then (3.6) implies that p′ has a limit for η → ±∞. The boundedness
of pressure (3.4) then forces

lim
η→−∞

p′(η) = lim
η→+∞

p′(η) = 0. (3.7)

Using this in (3.6) for η = ±∞ results in

− cSl + h(Sl) = A, (3.8a)

− cSr + h(Sr) = A, (3.8b)

giving

c = c(Sl, Sr) :=
h(Sl)− h(Sr)

Sl − Sr
=:

JhK
JSK

(Rankine-Hugoniot). (3.9)

Substituting c and A in (3.6) yields

h(S) p′ = (S− Sl)[ c(Sl, Sr)− c(Sl, S)], in R. (3.10)
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3.1 Equilibrium case: p given by (1.4)

Then p = pc(S), and we write (3.10) as

D(S) S′ = F (S) in R, (3.11)

where

D(S) = −h(S)
dpc
dS

(S) > 0, and F (S) = (Sl − S)[ c(Sl, Sr)− c(Sl, S)].

Clearly, F (Sl) = F (Sr) = 0.
If Sl > Sr, equation (3.11) has a solution satisfying (3.3) if F (S) < 0 for all Sr < S <

Sl. Hence, the shock {Sl, Sr, c} is admissible if c is given by (3.9) and

c(Sl, Sr) < c(Sl, S) for all Sr < S < Sl. (3.12a)

If Sl < Sr, the shock {Sl, Sr, c} is admissible if (3.9) is satisfied, and

c(Sl, Sr) > c(Sl, S) for all Sl < S < Sr. (3.12b)

Conditions (3.12) are classical (Oleinik admissibility conditions), see [14, 15, 23]. To
see which possible admissible shocks connect to the left or right states of the Riemann
problem (1.1)–(1.2) we introduce two saturations. For SB < S1 (first inflection point of
h), let S̄B ∈ (SB, 1) denote the unique point where the line through (SB, h(SB)) is tangent
to the graph of h. If SB ≥ S1, we set S̄B = SB. A similar definition gives S̄T ∈ (0, ST ),
see Figure 3. Thus, the points S̄B and S̄T satisfy (in a limit sense if SB ≥ S1 or ST ≤ S2),

h′(S̄B) =
h(S̄B)− h(SB)

S̄B − SB
= c(SB, S̄B), h′(S̄T ) =

h(S̄T )− h(ST )

S̄T − ST
= c(S̄T , ST ). (3.13)

Applying (3.12) to Riemann problem (1.1)–(1.2), we note that if SB < S1 , then SB
can serve as the right state Sr = SB of an admissible shock for left states between
SB < Sl < S̄B, see Figure 3. Similar for Sl = ST > S2 and S̄T < Sr < ST .

3.2 Hysteretic case: p given by (1.5)

If c(Sl, Sr) > 0 or c(Sl, Sr) < 0, then any admissible shock in terms of (1.4) is also an
admissible shock in terms of (1.5): To see this, fix Sl > Sr and let (3.12) hold. Define the
relation between p(η) and S(η) as

p(η) =

{
p

(i)
c (S(η)) if c(Sl, Sr) > 0,

p
(d)
c (S(η)) if c(Sl, Sr) < 0.

Then, separately for c(Sl, Sr) > 0 and c(Sl, Sr) < 0, S and p are related through the

classical relation (1.4) where pc is replaced by p
(i)
c and p

(d)
c respectively. Consequently,
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0 1
0

Figure 3: Graphical interpretation of conditions (3.12), applied to SB < S1 as the right
state and ST > S2 as the left state. The saturations S̄B and S̄T are shown in the figure.

the existence of S(η) and p(η) solving (3.10) with boundary conditions (3.3)–(3.4) follows
from Section 3.1. Observe that S′(η) < 0 for all η ∈ R as a consequence of (3.11) and
(3.12). Hence, recalling from (3.2) that Sδ(x, t) = S(η) and pδ(x, t) = p(η), we have

∂tSδ(x, t) = −c(Sl, Sr)
δ

S′(η)

{
> 0 when c(Sl, Sr) > 0 (imbibition wave),

< 0 when c(Sl, Sr) < 0 (drainage wave).

It is now straightforward to verify that (Sδ, pδ) satisfies the hysteresis relation (1.5) for
both c(Sl, Sr) > 0 and c(Sl, Sr) < 0. Hence, shocks that are admissible in terms of the
equilibrium capillary pressure (1.4) are admissible in terms of the hysteretic capillary pres-
sure (1.5) as well, provided c 6= 0. Note that the profiles (S, p) depend on the functional
form of pc, but not the resulting shock.

Observe that for c(Sl, Sr) > 0, the entire approximating wave (Sδ, pδ) is in imbibition

state since pδ(x, t) = p
(i)
c (Sδ(x, t)) and ∂tSδ > 0. Hence, we also refer to the resulting

shock as being in imbibition state. Similarly, for c(Sl, Sr) < 0, the shock is in drainage

state since pδ(x, t) = p
(d)
c (Sδ(x, t)) and ∂tSδ < 0. Effects of hysteresis are observed, if

the hysteretic states ahead and behind the shock are different. This can only happen for
stationary shocks having zero wave speed, i.e. c(Sl, Sr) = 0. For such shocks, Rankine-
Hugoniot’s expression (3.9) requires

c = c(Sl, Sr) =
h(Sl)− h(Sr)

Sl − Sr
= 0, implying h(Sl) = h(Sr). (3.14)

Note that this implies

Sr < SM < Sl, (if Sl > Sr). (3.15)
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Without a loss of generality we put the stationary shock at x = 0.

3.2.1 Case A: Connection between imbibition and drainage states

Let us first consider the case

S(0−, t) = Sl is in drainage state, (3.16a)

S(0+, t) = Sr is in imbibition state. (3.16b)

The case of Sl in imbibition and Sr in drainage is symmetrical. Here, the imbibition and
drainage states are inherited from the approximating solutions as before.

For (3.16) to be an admissible stationary shock, (Sl, Sr) must be such that

(A1) Relation (3.14) is satisfied.

(A2) Equation (3.10), with c(Sl, Sr) = 0, has a solution S(η) satisfying (3.3).

(A3) The pressure profile p : R→ R satisfies

p(η) =

{
p

(d)
c (S(η)) when η < 0,

p
(i)
c (S(η)) when η > 0.

(3.17)

Let pl := p(−∞) and pr := p(+∞). Then (3.17) implies

pl = p(d)
c (Sl) and pr = p(i)

c (Sr). (3.18)

Putting c(Sl, Sr) = 0 in (3.10) gives

h(S)p′ = h(Sl)− h(S) = h(Sr)− h(S) in R. (3.19)

This equation implies that

p′ is bounded in R, and thus, p is continuous in R. (3.20)

In particular, p(0−) = p(0+), or from (3.17)

p(d)
c (S(0−)) = p(i)

c (S(0+)). (3.21)

Combining (3.17) and (3.19) gives the problem

Dd(S) S′ = h(S)− h(Sl) in η < 0, (3.22a)

S(−∞) = Sl, (3.22b)
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where Dd(S) = −h(S)dp
(d)
c

dS
(S) > 0. The unique solution of (3.22) is S(η) = Sl for all

η < 0. This follows from the fact that if Sl > Sr, then Sl > SM from (3.15) and hence
h(S(η)) < h(Sl) when S(η) > Sl and h(S(η)) > h(Sl) when Sr < S(η) < Sl. Now suppose
there exists η0 < 0 such that S(η0) > Sl. Then h(S(η0)) < h(Sl) implying S′(η0) < 0.
This means that S(η) > S(η0) > Sl for all η < η0 contradicting S(−∞) = Sl. Similarly, if
Sr < S(η0) < Sl then S′(η0) > 0, yielding a contradiction as well.

Repeating this reasoning for η > 0, we conclude that the unique solution of (A1)–(A3)
is

(S(η), p(η)) =

{
(Sl, pl) = (Sl, p

(d)
c (Sl)) for η < 0,

(Sr, pr) = (Sr, p
(i)
c (Sr)) for η > 0,

(3.23)

where the pair (Sl, Sr) in addition to satisfying (3.14), also must satisfy pl = p
(d)
c (Sl) =

p
(i)
c (Sr) = pr due to (3.21), i.e.,

JhK = h(Sr)− h(Sl) = 0, JpK := pr − pl = 0. (3.24)

We show that based on the assumptions (P1)–(P2), a unique pair (Sl, Sr) = (S∗, S∗) with
0 < S∗ ≤ SM ≤ S∗ < 1 exists that satisfies (3.24). To see this, define the function
Ŝ : [0, SM ]→ [SM , 1] as

h(Ŝ(S)) = h(S). (3.25)

From (P2), the function Ŝ(·) is decreasing, continuous, Ŝ(0) = 1 and Ŝ(SM) = SM , see

also Figure 4 (left). Consider the strictly increasing function p
(d)
c (Ŝ(S)) for S ∈ (0, SM).

For S = 0, we have p
(d)
c (Ŝ(0)) = p

(d)
c (1) = p

(i)
c (1). Since p

(i)
c is a strictly decreasing

function, for S > 0 small enough one has p
(d)
c (Ŝ(S)) < p

(i)
c (S). On the other hand,

p
(d)
c (Ŝ(SM)) = p

(d)
c (SM) > p

(i)
c (SM). Thus, by intermediate value theorem, there exists

S∗ ∈ (0, SM) such that p
(d)
c (Ŝ(S∗)) = p

(i)
c (S∗), see Figure 4 (right). Thus, we put S∗ :=

Ŝ(S∗).
Hence, shocks {Sl, Sr, 0} (i.e. c(Sl, Sr) = 0), with their end states being in imbibition

and drainage, are admissible if and only if (3.24) is satisfied with

Sl = S∗, Sr = S∗, pl = p(d)
c (S∗), pr = p(i)

c (S∗) (Right state imbibition–left state drainage),
(3.26a)

Sl = S∗, Sr = S∗, pl = p(i)
c (S∗), pr = p(d)

c (S∗) (Left state imbibition–right state drainage),
(3.26b)

where (S∗, S
∗) with 0 < S∗ ≤ SM ≤ S∗ < 1 is the unique solution of

h(S∗) = h(S∗), p(i)
c (S∗) = p(d)

c (S∗). (3.27)

Connecting an imbibition state with another imbibition state demands that (3.24) be

satisfied with pl = p
(i)
c (Sl) and pr = p

(i)
c (Sr) which has the unique solution Sl = Sr. The

same result holds for connecting a drainage state with another drainage state. Hence, no
non-trivial stationary shock (Sl 6= Sr) exists in these cases.

12



0 1
0

0 1
0

Figure 4: Construction of the pair (S∗, S
∗) defined in (3.27). (left) The function Ŝ(·) in

the h-S diagram. (right) The composite function p
(d)
c ◦ Ŝ and its intersection with p

(i)
c .

3.2.2 Case B: One state undetermined

It is also possible that one of the states (Sl, Sr) is undetermined (neither in imbibition nor
in drainage). To demonstrate the admissibility for this case, we first assume that the left

state is undetermined and the right state is in imbibition. Using ∂tS = − c(Sl,Sr)
δ

S′ = 0 in
(1.5), we have that {Sl, Sr, 0} is an admissible stationary shock if

(B1) Relation (3.14) is satisfied.

(B2) Equation (3.10), with c(Sl, Sr) = 0, has a solution S(η) satisfying (3.3).

(B3) The pressure profile p : R→ R satisfies

p(η)

{
∈ [p

(i)
c (S(η)), p

(d)
c (S(η))] when η < 0,

= p
(i)
c (S(η)) when η > 0.

(3.28)

Following the same arguments as before, we have

p(0−) = p(0+), (3.29)

(S(η), p(η)) = (Sr, pr) = (Sr, p
(i)
c (Sr)) for all η > 0. (3.30)

What remains is the η < 0 problem which reads

h(S)p′ = h(Sl)− h(S)

p
(i)
c (S) ≤ p ≤ p

(d)
c (S)

}
for all η < 0, (3.31a)

S(−∞) = Sl, p(0−) = pr. (3.31b)

13



There exists infinitely many solutions of (3.31). However, in purview of the time-dependent

problem (1.3),(1.5) one gets in this case ∂tSδ(x, t) = − c(Sl,Sr)
δ

S′(η) = 0 for all t > 0. Since
the initial condition (1.2) is constant for x < 0, the physically relevant solution is the
constant state solution S = Sl, yielding p = pl. This satisfies (B1)–(B3) provided,

JhK = h(Sr)− h(Sl) = 0, JpK = pr − pl = 0, (3.32a)

p(i)
c (Sl) < pl = pr = p(i)

c (Sr) ≤ p(d)
c (Sl). (3.32b)

Hence, also in this case, condition (3.24) is satisfied. We show below that additionally
(3.32b) is satisfied if and only if

Sr ∈ [S∗, SM ] and Sl = Ŝ(Sr) ∈ [SM , S
∗], (3.33)

where (S∗, S
∗) and the function Ŝ(·) are defined in (3.27) and (3.25) respectively. Indeed,

from the definition of Ŝ(·), if Sr ∈ (S∗, SM) then h(Sl) = h(Ŝ(Sr)) = h(Sr) and Sl ∈
(SM , S

∗). From (P1) it directly follows that, p
(i)
c (Sl) < p

(i)
c (Sr) = pr. To get p

(i)
c (Sr) ≤

p
(d)
c (Sl) we consider the strictly increasing function p∆(S) := p

(d)
c (Ŝ(S)) − p

(i)
c (S) for

S ∈ (0, SM), see the properties of Ŝ(·), (P1) and Figures 4 and 5 (right). The function

has a zero at S = S∗. This means p∆(Sr) ≥ 0, or p
(d)
c (Sl) = p

(d)
c (Ŝ(Sr)) ≥ p

(i)
c (Sr). The

construction is also shown in Figure 5. It is straightforward to verify that if Sr < S∗ then
(3.32) can not be satisfied, leaving (3.33) as the only possibility to satisfy (3.32).

0 1
0

0 1
0

Figure 5: The saturations Sl, Sr, S∗ and S∗ in the h-S plane (left), and pc-S plane (right).

The pressure pl = pr = p
(i)
c (Sr) ∈ [p

(i)
c (Sl), p

(d)
c (Sl)) is also shown.

Condition (3.33) serves as the admissibility criterion when the left state is unde-
termined and the right state is in imbibition. Considering all combinations, including
undetermined-drainage, imbibition-undetermined, drainage-undetermined and undetermined-
undetermined, the complete list of admissible stationary shocks {Sl, Sr, 0} with Sl 6= Sr
is given in Table 1.
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Left state Right state Sl Sr pl pr

drainage imbibition = S∗ = S∗ = p
(d)
c (Sl) = p

(i)
c (Sr)

imbibition drainage = S∗ = S∗ = p
(i)
c (Sl) = p

(d)
c (Sr)

undetermined imbibition ∈ [SM , S
∗] ∈ [S∗, SM ] ∈ (p

(i)
c (Sl), p

(d)
c (Sl)] = p

(i)
c (Sr)

imbibition undetermined ∈ [S∗, SM ] ∈ [SM , S
∗] = p

(i)
c (Sl) ∈ (p

(i)
c (Sr), p

(d)
c (Sr)]

undetermined drainage ∈ [S∗, SM ] ∈ [SM , S
∗] ∈ [p

(i)
c (Sl), p

(d)
c (Sl)) = p

(d)
c (Sr)

drainage undetermined ∈ [SM , S
∗] ∈ [S∗, SM ] = p

(d)
c (Sl) ∈ [p

(i)
c (Sr), p

(d)
c (Sr))

undetermined undetermined ∈ [S∗, S
∗] ∈ [S∗, S

∗] ∈ [p
(i)
c (Sl), p

(d)
c (Sl)] ∈ [p

(i)
c (Sr), p

(d)
c (Sr)]

Table 1: All admissible stationary shocks {Sl, Sr, 0} with Sl 6= Sr. They satisfy the
condition JhK = h(Sr) − h(Sl) = 0, and JpK = pr − pl = 0 where Sl, Sr, pl and pr are
given in the table. The states on the left and the right of the shocks are also stated.
Imbibition state corresponds to p

(i)
c curve being used to relate Sl and pl or Sr and pr.

Similarly, drainage state corresponds to the use of p
(d)
c . Undetermined left state implies

that pl ∈ [p
(i)
c (Sl), p

(d)
c (Sl)] and undetermined right state implies pr ∈ [p

(i)
c (Sr), p

(d)
c (Sr)].

Remark 3.1 (Non-uniqueness of the pair (Sl, Sr)). Note that (3.33) does not yield a
unique pair (Sl, Sr), but rather an interval of possibilities. This is due to the fact that the
pressure in the underlying hysteresis model is not prescribed in one (or both) states where
it satisfies the inclusion part of (1.5).

4 Vanishing capillarity solutions of the Buckley-Leverett

equation

We construct the solution of the Riemann problem (1.1)–(1.2) with the admissibility
conditions from Section 3. A solution of (1.1) is composed of constant states separated
by shocks and rarefaction waves. We recall that a rarefaction wave is a smooth solution
of (1.1) having the form

S(x, t) = r(ζ) where ζ = x/t. (4.1)

Then for r(·) results the equation

dh

dS
(r(ζ)) = ζ for ζl < ζ < ζr, (4.2)

where

r(ζl) = Sl, and r(ζr) = Sr or ζl =
dh

dS
(Sl), and ζr =

dh

dS
(Sr).

Rarefaction waves are well-defined if

f ′′(S) does not change sign for all min{Sl, Sr} ≤ S ≤ max{Sl, Sr}. (4.3)
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We show below how to construct solutions of (1.1) with rarefaction waves satisfying
(4.2) along with condition (4.3), and shocks satisfying the admissibility conditions from
Section 3. For completeness, we briefly recall the classical Buckley-Leverett construction.

4.1 Classical construction

The construction of vanishing capillarity solutions for the classical case is well established,
see [14, 23]. Recalling the definitions of S̄B and S̄T in (3.13), we identify three cases.

Case I: ST ≤ SM :

In this case SB < SM since SB < ST . The vanishing capillarity solutions are

If ST ≤ S̄B :
S(x, t) =

{
ST for x < c(SB, ST ) t,

SB for x > c(SB, ST ) t,
(4.4a)

and with r(·) defined in (4.2),

If ST > S̄B :
S(x, t) =


ST for x < h′(ST ) t,

r(x/t) for h′(ST ) t < x < c(SB, S̄B) t,

SB for x > c(SB, S̄B) t.

(4.4b)

These expressions represent a monotonically decreasing profile that moves to the right,
describing an imbibition state. Hence S(0−, t) = S(0+, t) = ST for all t > 0.

Case II: SB ≥ SM :

In this case ST > SM . The vanishing capillarity solutions are

If SB ≥ S̄T :
S(x, t) =

{
ST for x < c(SB, ST ) t,

SB for x > c(SB, ST ) t;
(4.5a)

and

If SB < S̄T :
S(x, t) =


ST for x < c(S̄T , ST ) t,

r(x/t) for h′(SB) t > x > c(S̄T , ST ) t,

SB for x > h′(SB) t.

(4.5b)

These expressions represent a monotonically decreasing profile that moves to the left,
describing an drainage state. Hence S(0−, t) = S(0+, t) = SB for all t > 0.
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Case III: SB < SM < ST :

In this case we have (recall the definition of (3.13)),

S(x, t) =


ST for x < c(S̄T , ST ) t < 0,

r(x/t) for c(S̄T , ST ) t < x < c(SB, S̄B) t,

SB for 0 < c(SB, S̄B) t < x.

(4.6)

4.2 Construction with capillary hysteresis

Vanishing capillarity solution for Case I and II: Observe that in Case I of Sec-
tion 4.1 (ST < SM) the shock is in an imbibition state and the rarefaction wave part, if
it exists, satisfies ∂tS > 0. Hence, the vanishing capillarity solution as a whole is in imbi-
bition state. Similarly, for Case II the entire solution is in drainage state. Consequently,
based on the discussions in Section 3.2 and the fact that the classical solution does not
depend on the specific form of pc, the vanishing capillarity solutions for the capillary
hysteresis model in Case I and Case II are identical to the classical ones.

Vanishing capillarity solution for Case III: As in the classical case, we construct
a solution which is in imbibition state when x > 0 and drainage state when x < 0. Hence
one expects to have a stationary shock at x = 0. We restrict ourselves to the case

0 < SB < SM < ST < 1, and h(SB) ≤ h(ST ), (4.7)

the solution for h(ST ) ≤ h(SB) being symmetrical. With respect to the cases A and B in
Section 3.2 we divide the discussion in two parts.

4.2.1 Case ST ≥ S∗ ≥ SM

The restriction (4.7) implies that SB ≤ S∗. Recalling from Table 1, any stationary shock
at x = 0 must satisfy

lim
x↘0

S(x, t) = Sr ∈ [S∗, SM ] and lim
x↗0

S(x, t) = Sl = Ŝ(Sr) ∈ [SM , S
∗],

where the function Ŝ(·) and {S∗, S∗} are defined in (3.25) and (3.27) respectively.
Now suppose Sr ∈ (S∗, SM ]. Then we are in the situation of Figure 5 (left). The part

connecting SB to Sr describes an imbibition profile in {(x, t) : x > 0, t > 0}: see Case I
with ST replaced by Sr. Similarly, in {(x, t) : x < 0, t > 0} we have a drainage profile: see
Case II with SB replaced by Sl. However, again using Table 1, the left state in drainage
and the right state in imbibition implies Sr = S∗. Hence, Sr > S∗ yields a contradiction
and we are left with Sr = S∗ and Sl = S∗ as the unique possibility.
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0 1
0

0 1
0

Figure 6: Graph of h with possible constructions: (i) SM ≤ Sl < ST (left), and (ii)
ST < Sl ≤ S∗ (right).

Vanishing capillarity solution: For x > 0 and t > 0,

S(x, t) is given by (4.4) where ST = S∗. (4.8a)

For x < 0 and t > 0,

S(x, t) is given by (4.5) where SB = S∗. (4.8b)

Remark 4.1 (Convergence of (4.8) to the classical case). In the absence of hysteresis,

pc(S) = p
(i)
c (S) = p

(d)
c (S). This means that for the standard model, S∗ = S∗ = SM .

Hence, saturation becomes continuous at x = 0 and the vanishing capillarity solution
(4.8) becomes identical to (4.6).

4.2.2 Case S∗ > ST > SM

Let ŠT ∈ (S∗, SM ] be such that Ŝ(ŠT ) = ST , or in other words

ŠT = Ŝ−1(ST ) ∈ (S∗, SM) for all ST ∈ (SM , S
∗). (4.9)

Then, restriction (4.7) implies that SB < ŠT , see also Figure 6.

(i) SM ≤ Sl < ST : This would give a drainage wave connecting ST and Sl in {(x, t) :
x < 0, t > 0} and an imbibition wave connecting Sr and SB in {(x, t) : x > 0, t > 0}.
This contradicts Table 1 since this would yield Sr = S∗ and Sl = S∗.

(ii) ST < Sl ≤ S∗ : This would result in an imbibition wave connecting ST and Sl
in {(x, t) : x < 0, t > 0}. This contradicts again Table 1 since it would imply that
Sl ∈ [S∗, SM ].

Hence, we are left with
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Vanishing capillarity solution: for x > 0 and t > 0,

S(x, t) is given by (4.4) where ST = ŠT . (4.10a)

For x < 0 and t > 0,
S(x, t) = ST (solution is frozen). (4.10b)

The vanishing capillarity solutions for the cases ST > S∗ and ST ∈ (SM , S
∗) are shown in

Figure 7. Observe that there is no classical counterpart of (4.10). The solution plotted
in Figure 2 (right) for the play-type hysteresis model is of this type.

x

t

0

S̄BS∗

SB
ST

S̄T

S∗

x

t

0

SB

ŠTST

Figure 7: Vanishing capillarity solutions for the case (left) ST > S∗ with the specific
ordering SB < S1 < S̄B < S∗ < S∗ < S̄T < S2 < ST , and for the case (right) SM <
ST < S∗ with the ordering SB < ŠT < S̄B < SM < ST < S∗. The red lines represent
shocks and the dashed regions are the rarefaction waves. In the left figure, there are two
traveling shocks SB–S̄B and ST–S̄T and a stationary shock S∗–S

∗. In the right figure,
there is one shock SB–ŠT and a stationary shock ŠT–ST . The S profiles for these two
cases were shown in Figure 2 and will be discussed again in Section 5.

Remark 4.2 (Weak solutions of (1.1)). It is straightforward to check that solutions (4.8)–
(4.10) are weak solutions of (1.1)–(1.2) in the usual sense: i.e., they satisfy∫ ∞

0

∫
R
[S ∂tϕ+ h(S) ∂xϕ] dx dt+ ST

∫
R−
ϕ(x, 0) dx+ SB

∫
R+

ϕ(x, 0) dx = 0, (4.11)

for all ϕ ∈ C1(R×R+) vanishing for large t and |x|. This is evident from the fact that the
Rankine-Hugoniot condition is satisfied for all the admissible shocks. The specific criteria
developed in Section 3 select the physically relevant solution among those satisfying (4.11).

Remark 4.3 (Generality of the results with respect to other hysteresis models). The
admissible shocks presented in Table 1 and the vanishing capillarity solutions presented in
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(4.8) and (4.10) are consistent with any hysteresis model that satisfies the condition

p ∈ H, and p =


p

(i)
c (S) implies ∂tS ≥ 0,

∈ [p
(i)
c (S), p

(d)
c (S)] allows ∂tS = 0,

p
(d)
c (S) implies ∂tS ≤ 0.

(4.12)

Most of the commonly used hysteresis models, including the Lenhard-Parker model [24]
and the extended play-type model [8] belong to this category. The results are consistent
with any model satisfying (4.12) since the models only differ in the description of (S, p)

when p ∈ (p
(i)
c (S), p

(d)
c (S)), i.e. when the hysteretic state is undetermined. As a result, if

a stationary shock connects imbibition to drainage, then the set of equations (A1)–(A3)
are valid also for a model satisfying (4.12). Thus, the resulting shocks are unaltered.
Similarly, (B1)–(B3) (in particular (B3)) are consistent with describing the shock when

one of the states is undetermined since in this case ∂tS = − c(Sl,Sr)
δ

S ′ = 0 which is allowed
by (4.12). Hence, models satisfying (4.12) are consistent with admissible shocks listed in
Table 1, and consequently with the vanishing capillarity solutions obtained in this section.

5 Numerical Results

To solve (1.2), (1.5) numerically, (1.5) is usually regularised in the following way:

p =


p

(i)
c (S)− τ∂tS when ∂tS > 0,

∈ [p
(i)
c (S), p

(d)
c (S)] when ∂tS = 0,

p
(d)
c (S)− τ∂tS when ∂tS < 0.

(5.1)

The relaxation parameter τ > 0 (dynamic capillarity coefficient) was mentioned briefly
in Section 1. The parameter τ is kept small to approximate the results of the model
(1.5) accurately. This also ensures that τ does not exceed the threshold required to cause
effects such as saturation overshoot [19, 21].

We solve (1.3) and (5.1) in a domain (−L,L) for a large L > 0. The boundary
conditions used are

h(S)[1 + δ∂xp](−L, t) = h(ST ), and p(L, t) = p(i)
c (SB) for all t > 0. (5.2)

The approach for solving the system (1.3), (5.1)–(5.2), is based on rearranging (5.1) to
express ∂tS as a function of S and p, and using this, to consider (1.3) as an elliptic
equation for the pressure. Details of the numerical method are given in Section 5 of [19],
see also the numerical sections of [21, 34]. Cell centered finite difference method with a
uniform mesh is used for the computation with ∆x and ∆t representing the mesh and the
time step sizes respectively. The following choices of parameters are made

τ = 0.01, δ = 0.25, L = 100, ∆x = 0.01, ∆t = 0.0001.
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These values ensure both that our parabolic solver is converging and the capillarity solu-
tions are sufficiently close to their hyperbolic limit. Since smaller δ also implies that the
profiles take longer to develop, we have optimized the value of δ so that a good approxi-
mation of the developed profile is obtained in a reasonable time. Figure 8 shows that the
choice of τ gives a good approximation to the limiting case τ → 0. Decreasing τ further
significantly increases the number of linear iterations required.

-50 0 50
0

0.2

0.4

0.6

0.8

1

Figure 8: Saturation profiles for different τ values in (5.1) with reference to the numerical
experiment conducted in Figure 9. Here, t = 100. The profiles converge to a limiting
profile for τ → 0 and are practically indistinguishable for τ < 1.

5.1 Validation

For validating our predictions of Section 4 we use Brooks-Corey expression (2.6) for h
with M = 1. This gives SM = 0.5. Van Genuchten parametrization is used here to model
the capillary curves. Two choices for the imbibition and drainage curves are made. At
first, we take p

(i)
c (·) and p

(d)
c (·) close to each other, i.e.,

p(i)
c (S) = 3.5 (S

− 1
q1 − 1)1−q1 with q1 = 0.92, and p(d)

c (S) = p(i)
c (S) + 1

2
(1− S),

see Figure 9 (right). In this case, direct computation shows that S∗ = 0.4121 and
S∗ = 0.5879. We take ST = 0.8 and SB = 0.1 implying that ST > S∗. The vanish-
ing capillarity solution in this scenario is (4.8). It consists of shocks between ST–S̄T and
SB–S̄B, rarefaction waves between S̄T–S∗ and S̄B–S∗ and a stationary shock from S∗ to
S∗ at x = 0, see Figure 2 (left) and Figure 9 (left). The numerically computed solution
is shown in Figure 9 (left) and in the pc-S plane in Figure 9 (right). The numerically
obtained capillary solutions are close to the predicted vanishing capillarity solutions. The
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Figure 9: (left) Numerically computed capillarity solution against the vanishing capillarity
solution (black dashed line) for ST > S∗ given by (4.8). Here, δ = 0.25, SB = 0.1 and
ST = 0.8. The numerical solution is shown at t = 50 and t = 100. (right) The same

numerical solution in the pc-S plane at t = 100. For x > 0, the solution is on top of p
(i)
c

(imbibition state), whereas, for x < 0 it is on top of p
(d)
c (drainage state). A horizontal

shift is observed at x = 0 implying that the pressure is continuious across x = 0, see
(3.24).

minor differences are due to δ > 0, τ > 0 and numerical errors. Note that the counter-
current flow for x < 0 stems from non-monotonicity of h, since the flux at x = 0 is h(S∗)
which is greater than the flux at the left boundary.

Next, we take p
(i)
c same as before but p

(d)
c as in Figure 1 (right):

p(d)
c (S) = 5 (S

− 1
q2 − 1)1−q2 with q2 = 0.9.

These curves resemble experimentally obtained retention curves (see [22]) and were taken
from [19]. With (SB, ST ) same as before, one has ST < S∗ = 0.8759 in this case. Hence,
recalling Section 4.2.2, particularly (4.10), the solution is frozen for x < 0. For x > 0,
there is a shock connecting ŠT = 0.2 and SB. This behaviour is mimicked by the computed
capillarity solutions, see Figure 10. In this case, the total mass is still balanced since the
total rate of water infiltration is c(SB, ŠT )(ŠT − SB) = h(ŠT )− h(SB) = h(ST )− h(SB),
which is precisely equal to the difference of fluxes at the left and the right boundaries.

6 Conclusion

In this paper we considered the Buckley-Leverett equation (1.1) with non-monotone flux
function. This occurs in gravity driven flows. In the presence of hysteresis, such as (1.5),
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Figure 10: (left) Computed capillarity solution against the vanishing capillarity solution
(black dashed line) for SM < ST < S∗ given by (4.10). Here, δ = 0.25, SB = 0.1 and
ST = 0.8. The saturation for x < 0 does not change and S(0, t) ≈ ŠT = 0.2 for all t > 0.
(right) The numerical solution in the pc-S plane for t = 100. The pressure at x = 0 is

approximately pl = p
(i)
c (ŠT ).

the hyperbolic (vanishing capillarity) limit of solutions to (1.3) differs from the classical
solutions obtained through the equilibrium expression (1.4). In particular, a solution to
the Riemann problem (1.1)–(1.2) has a stationary shock at x = 0 if the left (x < 0) and
the right (x > 0) states lie in the increasing and decreasing parts of the flux function
respectively, or vice versa. The hysteretic states on the left and right become different in
this case and thus, different capillary relations are used. Using travelling wave solutions,
an admissibility condition (3.24) is derived for the stationary shocks. The condition
states that the flux function h and the pressure corresponding to the hysteretic state of
the system, remain continuous across the shock. It is then used to derive all admissible
shocks. They are listed in Table 1. The shocks are classified into two categories. The first
(Case A) connects imbibition states to drainage states, and the second (Case B) has one
of the states undetermined.

Depending on the values of the Riemann data with respect to characteristic points
that are easily computable a-priori from h and the capillary curves, two possibilities are
identified (corresponding to Case A and Case B) when the stationary shocks occur. The
vanishing capillarity solutions for these cases are given by (4.8) and (4.10). Interestingly,
the solution (4.10) remains frozen in time in one of the halves and thus, differs significantly
from the classical solution. To our knowledge, this is a novel observation. The predictions
were validated using numerical experiments.
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