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Preface

These lecture notes result from courses given at Leiden University and at Delft University of Tech-
nology. They are intended for students in applied mathematics, physics, fluid mechanics and the
engineering sciences.

The material used is taken from existing literature as it developed over the past four decades. It could
not have been written without J. Smoller’s “Shock Waves and Reaction-Diffusion Equations” and R.
LeVeque’s “Numerical Methods for Conservation Laws”. The result is fairly self-contained and is
meant as an introduction to the exciting area of conservation laws.

Conservation laws in the form of hyperbolic first order partial differential equations arise in a wide
variety of models describing transport phenomena. Generally, they result if dissipative – second-order
parabolic – terms are disregarded. For instance, the well-known Buckley–Leverett equation in two-
phase porous media flow arises when capillary forces are absent, see Appendix A. At first sight, a
much simpler set of equations (or equation) results which should describe the behaviour of the system
in that limit (of vanishing viscous or capillary forces). Indeed, discontinuous solutions in the form of
shock waves occur, as to be expected from the simplifying assumptions. Here, however, one of the
main difficulties and issues in the theory of conservation laws enters. By considering ‘conservation’
only, multiple solutions are possible for a given initial-boundary value problem and additional condi-
tions are needed to select the unique and physically correct solution.

Such uniqueness conditions are called entropy conditions. The word ‘entropy’ is used because much
of the theory of conservation laws originates from the equations of gas dynamics where entropy plays
its natural role. Entropy conditions can be derived from the “full” problem, i.e. including the small
dissipative terms, by passing to the limit. For important classes of problems they are independent of
the form of the dissipative terms and they can be stated directly in terms of quantities appearing in
– or related to – the conservation law itself. Therefore one ‘forgets’ the limit process of vanishing
viscosity (Burgers equation) and considers the equation directly. For scalar equations with dissipative
terms in divergence form this can easily be made rigorous. For systems, however, this is in general
not true and research is still in progress to understand and quantify the dependence of the entropy
conditions on the form and nature of the vanishing dissipative terms.

Much of the above is treated in these lecture notes. Part I is concerned with the scalar case and treats



Burgers equation, Oleinik’s uniqueness and existence proof for convex flux functions, travelling waves
and Kruzkov’s formulation for general flux functions. Part II is mainly devoted to the Riemann prob-
lem for systems. It explains the construction of solutions as well as various theoretical aspects, such
as existence of weak shocks, uniqueness, entropy formulation and conditions and viscous profiles of
shocks.

I am greatly indebted to Hans Bruining from the Department of Reservoir Engineering of Delft Uni-
versity of Technology. Hans introduced me to the area of conservation laws, patiently explained his
multi-phase flow problems in porous media, and convinced me to give a course for the applied math-
ematicians and petroleum engineers. He also supplied much of the material that led to the chapter on
multi-phase flow in porous media.

I am also indebted to the students in Leiden and Delft for their interest and motivating discussions.
I am particularly appreciative of the help of Arjan Straathof and Gert-Jan Pieters who converted my
handwritten notes into this LATEX edition.

C.J. van Duijn

Dept. of Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven.
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Part I

Scalar case
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3

1 The viscous Burgers equation

1.1 Travelling waves

Let ν>0 and ur, ul∈ IR. We consider travelling wave solutions of the equation

ut +
(
u2

2

)
x

= νuxx for (x, t) ∈ Q := IR × IR+ (1.1)

which satisfy

u(−∞, t) = ul , u(+∞, t) = ur for all t > 0 . (1.2)

To find a travelling wave we set

u(x, t) = f(η) with η = x− ct .

Here c∈ IR denotes the wavespeed. Equation (1.1) and the boundary conditions (1.2) imply that f and
c should satisfy the boundary value problem

− cf ′ +
(
f2

2

)′
= νf ′′ in IR , (1.3)

f(−∞) = ul , f(+∞) = ur . (1.4)

Equation (1.3) can be integrated to yield

−cf +
f2

2
= νf ′ +A in IR , (1.5)

where the constants c and A are determined from the boundary conditions (1.4):

η → ∞ ⇒ −cur +
u2

r

2
= A

and

η → −∞ ⇒ −cul +
u2

l

2
= A .
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4 1 THE VISCOUS BURGERS EQUATION

This gives

c = 1
2(ul + ur) and A = −ulur

2
and for f the equation

2νf ′ = (f − ul)(f − ur) in IR .

From this we deduce

• ul < ur, f ∈ (ul, ur) ⇒ f ′ < 0 and hence no travelling wave exists.

• ul > ur, f ∈ (ur, ul) ⇒ f ′ < 0 and the solution is found by direct integration:

f(η) = ur + (ul − ur)
/(

1 + exp
{
ul − ur

2ν
η

})
.

This implies

u(x, t) = ur + (ul − ur)
/(

1 + exp
{
ul − ur

2ν
(x− ct)

})
for −∞<x<∞ and t>0. Note that u∈C∞(Q) and that

u0(x, t) := lim
ν↓0

u(x, t) =

⎧⎪⎨⎪⎩
ul x < ct

(ul + ur)/2 x = ct

ur x > ct .

Thus the limit u0 has a discontinuity (a shock), which travels along the curve x(t)=ct=
ur + ul

2
t,

see Figure 1.1. Observe that this construction is only possible when ul>ur.

x

t

u0 = ul

x(t) =
ur + ul

2
t

dx

dt
=
ul + ur

2

u0 = ur

Figure 1.1. The shock curve

1.2 A single hump

Consider the problem ⎧⎪⎪⎨⎪⎪⎩
ut +

(
u2

2

)
x

= νuxx in Q

u(·, 0) = Mδ(·) + u0 in IR ,
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1.2. A SINGLE HUMP 5

where δ denotes the Dirac-distribution at x = 0 and where M > 0 and u0 ∈ IR. Without loss of
generality we may set u0 =0. This follows from the transformation

x = x− u0t and u = u(x, t) = u(x+ u0t, t) − u0 ,

which implies for u ⎧⎪⎪⎨⎪⎪⎩
ut +

(
u 2

2

)
x

= νuxx in Q

u(·, 0) = Mδ(·) in IR .

The solution of this problem is called the fundamental solution (of the viscous Burgers equation). It
satisfies the equation for all t>0 and the conditions

(i)
∫

IR
u(x, t)dx = M for all t > 0 ,

(ii) lim
t↓0

u(x, t) = 0 for all x �= 0 .

To find the fundamental solution we try the self-similar form

u(x, t) = tαϕ(η) where η = xtβ ,

and where α, β∈ IR have to be determined from the differential equation. Substitution gives

αϕ+ βηϕ′ + tα+β+1

(
ϕ2

2

)′
= νt1+2βϕ′′ .

Choosing

α = β = −1
2
,

eliminates the powers of t from the equation and gives

−ϕ− ηϕ′ +
(
ϕ2

)′ = 2νϕ′′ in IR . (1.6)

If a non-trivial integrable solution of (1.6) exists, then it induces a solution u of equation (1.1) which
satisfies for all t>0 ∫

IR
u(x, t)dx =

∫
IR
t−

1
2ϕ

(
xt−

1
2

)
dx =

∫
IR
ϕ(η)dη .

This implies conservation of mass. Because of (i) we therefore impose∫
IR
ϕ(η)dη = M . (1.7)

To satisfy (ii) we impose in addition

lim
|η|→∞

ηϕ(η) = 0 . (1.8)

Equation (1.6) can be integrated. This gives

−ηϕ+ ϕ2 = 2νϕ′ +A .
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6 1 THE VISCOUS BURGERS EQUATION

Condition (1.8) implies A=0 (check !). Hence we are left with the first order equation

ϕ′ +
η

2ν
ϕ =

ϕ2

2ν
in IR .

Note that ϕ′ = 0 as ϕ= η, see also Figure 1.2 Using an appropriate integrating factor, this equation
can be solved explicitly. Since(

exp
{
η2

4ν

}
ϕ

)′
=

1
2ν

exp
{
η2

4ν

}
ϕ2 ,

we find for

ψ = exp
{
η2

4ν

}
ϕ

the equation

ψ′ =
1
2ν

exp
{
− η

2

4ν

}
ψ2 , or −

(
1
ψ

)′
=

1
2ν

exp
{
− η

2

4ν

}
.

Hence ψ is given by

ψ(η) =
1

K − 1
2ν

∫ η

0
exp

{
− s2

4ν

}
ds

,

and consequently we find for ϕ

ϕ(η) = exp
{
− η

2

4ν

}/{
K − 1

2ν

∫ η

0
exp

{
− s2

4ν

}
ds

}
,

or

ϕ(η) = exp
{
− η

2

4ν

}/{
K +

1√
ν

∫ ∞

η
2
√

ν

exp
{−s2}ds

}
after a suitable redefinition of K. This constant of integration is determined by condition (1.7). The
result is (verify !)

K =

√
π

ν

exp
{
M

2ν

}
− 1

and thus

ϕ(η) =

√
ν

(
exp

{
M

2ν

}
− 1

)
exp

{−η2

4ν

}
√
π +

(
exp

{
M

2ν

}
− 1

)∫ ∞

η
2
√

ν

exp {−s2}ds
, (1.9)

see Figure 1.2.
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1.2. A SINGLE HUMP 7

ϕ(η)

η

Figure 1.2. The graph of ϕ

Remark 1.1. The similarity solution u(x, t)= t−
1
2ϕ

(
xt−

1
2

)
satisfies for all t>0

‖u(·, t)‖Lp(IR) =

⎧⎨⎩t
1−p
2p ‖ϕ‖Lp(IR) for 1 � p <∞

t−
1
2 ‖ϕ‖L∞(IR) for p = ∞ .

Next we study the behaviour of the solution when ν ↓0. First consider η�0:

0 < ϕ(η) <
√
ν

exp
{
M

2ν
− η2

4ν

}
exp

{
M
2ν

}∫ ∞

η
2
√

ν

exp
{−s2}ds

< 2
√
ν

π
exp

{
− η

2

4ν

}
.

Thus ϕ(η)→0 as ν ↓0, uniformly in η∈(−∞, 0]. Next consider η�
√

2M :

0 < ϕ(η) <
√
ν

π
exp

{
M

2ν
− η2

4ν

}
.

Thus ϕ(η) → 0 as ν ↓ 0, uniformly in η ∈ [
√

2M,∞). Finally let 0 < η <
√

2M . We now use the
estimate (ABRAMOWITZ & STEGUN [1])

exp
{
z2

}∫ ∞

z
exp

{−s2}ds→ 1
2z

as z → ∞ .

This gives

ϕ(η) ∼ √
ν

exp
{
M

2ν
− η2

4ν

}
√
π + exp

{
M

2ν

} √
ν

η
exp

{
− η

2

4ν

} for small ν .

Thus ϕ(η)→η as ν ↓0, pointwise in η∈(0,
√

2M ). In terms of the original variables x and t we have
as limit profile

u0(x, t) := lim
ν↓0

u(x, t) =

⎧⎪⎨⎪⎩
0 x � 0 ,
x/t 0 < x <

√
2Mt ,

0 x �
√

2Mt ,

see Figure 1.3.
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8 1 THE VISCOUS BURGERS EQUATION

x

u0 = 0u0 = 0

u0(x, t) =
x

t

t

Figure 1.3. The limit profile

We observe that:

(i) ‖u0(·, t)‖L∞(IR) =

√
2M
t

for t > 0.

(ii) supp
(
u0(·, t)) =

{
x ∈ IR : u0(x, t) �= 0

}
= [0,

√
2Mt ].

(iii) speed of discontinuity (shock):

dx
dt

=

√
M

2t
=
u0(x(t)−, t) + u0(x(t)+, t)

2
.

Remark 1.2. Note that the expression for the shock speed is identical to the one found in the travelling
wave case. This is not a coincidence. It will be explained in Chapter 2.

1.3 General initial value problem

Consider the problem

(B)

⎧⎪⎪⎨⎪⎪⎩
ut +

(
u2

2

)
x

= νuxx in Q

u(·, 0) = u0(·) on IR ,

where u0 ∈L1
loc(IR) � satisfies certain growth conditions at ±∞ which we leave unspecified for the

moment. To solve this problem we introduce the Cole–Hopf transformation (see [15],[37]). First set

u = ψx ,

which gives

ψxt +
(
ψ2

x

2

)
x

= νψxxx ,

and after integration (setting the constant of integration zero)

ψt +
ψ2

x

2
= νψxx .

�L1
loc(IR) :=

{
v : IR→ IR :

∫ b

a
|v(x)|dx<∞ for any −∞<a<b<∞}

. This is the span of locally integrable functions
on IR.
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1.3. GENERAL INITIAL VALUE PROBLEM 9

Next set
ψ = −2ν logϕ (ϕ > 0) .

Then

−2ν
ϕt

ϕ
+

4ν2

2
ϕ2

x

ϕ2
= ν

{
−2ν

ϕxx

ϕ
+ 2ν

ϕ2
x

ϕ2

}
,

which leads to the transformed problem

(T)

{
ϕt = νϕxx in Q ,

ϕ(·, 0) = ϕ0(·) on IR ,

where

ϕ0(x) = exp
{
− ψ

2ν

}
= exp

{
− 1

2ν

∫ x

0
u0(s)ds

}
for x ∈ IR . (1.10)

Theorem 1.3. If ϕ0 ∈ C(IR) satisfies for some constant c > 0 the growth condition ϕ0(x) =
O (

exp
{
cx2

})
as x→±∞, then (T) has a unique classical solution ϕ given by

ϕ(x, t) =
1√

4πνt

∫
IR
ϕ0(s) exp

{
−(x− s)2

4νt

}
ds .

Proof. See FRIEDMAN [25].

As an immediate consequence we have

Theorem 1.4. Let u0 ∈L1
loc(IR) be such that ϕ0, given by (1.10), satisfies the condition of Theorem

1.3. Then (B) has a unique solution u ∈ C∞(Q) and

u = ψx = −2ν
ϕx

ϕ
=

∫
IR

(
x− s

t

)
exp

{
− G

2ν

}
ds∫

IR
exp

{
− G

2ν

}
ds

,

where

G = G(s, x, t) =
∫ s

0
u0(p)dp+

(x− s)2

2t
.

Application : stability of travelling waves.
Let

u0(x) =

{
ul for x < 0 ,
ur for x > 0 ,

where −∞<ur<ul<∞. Then

G(s, x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uls+

(x− s)2

2t
for s < 0 ,

urs+
(x− s)2

2t
for s > 0 .
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10 1 THE VISCOUS BURGERS EQUATION

Substitution gives (non-trivial exercise)

u(x, t) = ur +
ul − ur

1 + h(x, t) exp
{
ul − ur

2ν
(x− ct)

} , (1.11)

where
c = 1

2(ul + ur) ,

and

h(x, t) =

{∫ ∞

− (x−urt)√
4νt

exp
{−ξ2}dξ

}/{∫ ∞
(x−ult)√

4νt

exp
{−ξ2}dξ

}
.

From this expression we observe

(i) h(x, t) → 0 as t→ ∞, for fixed x/t < ur.

(ii) h(x, t) → 1 as t→ ∞, for fixed ur < x/t < ul.

(iii) h(x, t) → ∞ as t→ ∞, for fixed x/t > ul.

Therefore u(x, t)→f(x− ct) in the above sense, see Figure 1.4.

x

t

u→ f

O

u→ ul

x = urt

x = ult

u = ul u = ur

u→ ur

Figure 1.4. Travelling wave limit

Remark 1.5. If for some a �=0,

u0(x) =

{
ul for x < a ,

ur for x > a ,

then u converges to the shifted travelling wave: u(x, t)→f(x− a− ct) in the above sense.

Remark 1.6. BURGERS [13] wrote an interesting book on his equation. It contains a detailed dis-
cussion on the physical background and it gives an interpretation of solutions related to turbulent
behaviour of flows. The book is called “The Nonlinear Diffusion Equation”. This is remarkable in
view of the Cole–Hopf transformation: the Burgers equation is one of the exceptional cases in which
a nonlinear partial differential equation can be transformed to a linear one.
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2 The equation ut+(f (u))x=0

2.1 Characteristics

Throughout this chapter we assume f ∈C2(IR) and f ′′>0. We consider the initial value problem

(P)

{
ut +

(
f(u)

)
x

= 0 in Q , (2.1)

u(·, 0) = u0(·) on IR .

Proposition 2.1. The only smooth C1-functions which satisfy equation (2.1) in Q are those which are
non-decreasing in x for each fixed t>0.

Proof. Let u ∈ C1(Q) be a solution of (2.1). Consider a point (x0, t0) ∈ Q and the initial value
problem ⎧⎪⎨⎪⎩

dx
dt

= f ′ (u(x, t)) for t > 0

x(t0) = x0 .

The unique solution x(t) is a characteristic curve of equation (2.1). Along this curve we have

d
dt
u (x(t), t) = ut + ux

dx
dt

= ut + uxf
′(u) = 0 .

Thus u is constant along a characteristic. Consequently, the speed of a characteristic is also constant:

dx
dt

(t) = f ′
(
u(x0, t0)

)
for t > 0 .

Note that characteristics are straight lines in the x− t plane. Now suppose there exist points (x1, t1),
(x2, t1) (x2>x1) such that

u1 := u(x1, t1) > u(x2, t1) =: u2 .

Then
dx1

dt
(t) = f ′(u1) > f ′(u2) =

dx2

dt
(t) for all t > 0 .

Hence the characteristics intersect at some t2 > t1, see Figure 2.1, contradicting the smoothness of
u.
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12 2 THE EQUATION ut+(f(u))x =0

x

t

x1 x2

t2

t1
u = u2u = u1

f ′(u2)f ′(u1)

Figure 2.1. Intersecting characteristics

Example 2.2. Let f(u)= 1
2u

2 and

u0(x) =

⎧⎪⎨⎪⎩
1 x � 0 ,
1 − x 0 < x < 1 ,
0 1 � x .

Then, as in Figure 2.2,

u(x, t) =

⎧⎪⎨⎪⎩
1 x < t

(1 − x)/(1 − t) t � x � 1
0 x > 1 .

Note that the solution breaks down at t=1!

u

0

1

x x

t

u0

1

0 x

u(x, 1)

1

u = 0

1

u = 1

Figure 2.2. Solution of example 2.2

2.2 Construction by the method of characteristics

We recall that
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2.2. CONSTRUCTION BY THE METHOD OF CHARACTERISTICS 13

• u is constant along any characteristic x(t);

• dx
dt

= f ′
(
u(x, t)

)
for t > 0.

Let (x, t)∈Q be a given point. Set{
u = u0(y)
x− y = f ′(u)t ⇒ y = x− f ′(u)t .

Then u=u(x, t) is implicitly given by the equation

u = u0

(
x− f ′(u) t

)
for (x, t) ∈ Q ,

see also Figure 2.3 for an explanation of the construction.

t

x
u0 y(x, t)

(x, t)

f ′(u)

Figure 2.3. The method of characteristics

If u0 ∈ C1(IR) with u0 and u′0 bounded on IR, we use the implicit function theorem to solve this
equation for u as a differentiable function of x and t (with t sufficiently small). In particular

ut = u′0
{−f ′′(u)utt− f ′(u)

} ⇒ ut = − f ′(u)u′0
1 + f ′′(u)u′0t

and

ux = u′0
{
1 − f ′′(u)uxt

} ⇒ ux =
u′0

1 + f ′′(u)u′0t
.

From these expressions we learn that if f ′′(u)u′0 �0 (see also Proposition 2.1), then ut and ux remain
bounded: the characteristics diverge and no discontinuity occurs. On the other hand, if f ′′(u)u′0< 0,
then the derivatives blow up when 1+f ′′(u)u′0t→ 0. Since f ′′ > 0, this occurs if there are points
where u′0<0. What happens near such a discontinuity or shock?
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14 2 THE EQUATION ut+(f(u))x =0

2.3 Weak solutions and shocks

Let u denote a density and f the corresponding mass flux. Further, let f=f(u) be a given constitutive
relation.

����������
����������
����������
����������

����������
����������
����������
����������

x
a b

f f

Figure 2.4. Mass balance

This leads to the mass-balance equation, see Figure 2.4,

d
dt

∫ b

a
u(x, t)dx+ {f (u(b, t)) − f (u(a, t))} = 0 ,

for any −∞<a<b<∞ and t>0. If u and f are smooth this gives

∫ b

a

{
ut +

(
f(u)

)
x

}
dx = 0

and since this holds for any a<b it follows that

ut + (f(u))x = 0 .

x

t

x(t)

ba

Figure 2.5. Curve of discontinuity

Next suppose that u is discontinuous across a smooth curve x(t) and that the differential equation
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2.3. WEAK SOLUTIONS AND SHOCKS 15

holds on both sides, see Figure 2.5. Then

d
dt

∫ b

a
u(x, t)dx =

d
dt

{∫ x(t)

a
u(x, t)dx+

∫ b

x(t)
u(x, t)dx

}

=
∫ x(t)

a
utdx+

dx
dt
u(x(t)−, t) +

∫ b

x(t)
utdx− dx

dt
u(x(t)+, t)

=
∫ x(t)

a
utdx+

∫ b

x(t)
utdx+

dx
dt

(ul − ur)

= fa − fl − fb + fr +
dx
dt

(ul − ur) ,

where indices are used to abbreviate notation. Thus

dx
dt

=
fr − fl

ur − ul
=:

[f ]
[u]

. (2.2)

This is called the Rankine–Hugoniot shock condition. It is a direct consequence of the conservation
principle across the shock.

Finish example 2.2. At t=1 we have

u(x, 1) =

{
1 for x < 1
0 for x > 1 .

Continue the solution as a shock solution with ul =1 and ur =0. Then

dx
dt

=
[f ]
[u]

=
1
2
u2

r − u2
l

ur − ul
=
ur + ul

2
=

1
2
.

Thus for t�1 we may define

u(x, t) =

{
1 for x < 1 + 1

2(t− 1)
0 for x > 1 + 1

2(t− 1) .

Note that the shockspeed (2.2) was also found for the limit cases discussed in Sections 1.1 and 1.2:

with f(u)= 1
2u

2, we have
dx
dt

= 1
2(ul+ur).

Mathematically, the differential equation and the shock condition can be combined into one statement:
the weak form of the differential equation.

Definition 2.3. A bounded measurable function u is called a weak solution of (P), with bounded
measurable initial data u0, if∫

Q
{uϕt + f(u)ϕx} dxdt+

∫
IR
ϕ(x, 0)u0(x)dx = 0 (2.3)

for all ϕ∈C1(Q) which vanish identically for large t and large |x|.
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16 2 THE EQUATION ut+(f(u))x =0

ϕ = 0

x

t

supp(ϕ)

Figure 2.6. Support of a typical test function ϕ

Proposition 2.4. Let u be a weak solution of (P) such that u∈C1(N) for some open set N⊂Q. Then
equation (2.1) holds classically in N .

Proof. For arbitrary (x0, t0)∈N , let D⊂N denote a disc centered at (x0, t0). Let ϕ∈C∞
0 (D). Then

identity (2.3) gives ∫
D
{uϕt + f(u)ϕx}dxdt = 0

and the smoothness of u allows us to integrate by parts∫
D
{ut + (f(u))x}ϕdxdt = 0 for all ϕ ∈ C∞

0 (D) .

This implies that ut+(f(u))x =0 in (x0, t0).

Proposition 2.5. Let u∈C1(IR × (0, δ)) ∩ C(IR × [0, δ)) for some δ> 0, and let u0 ∈C(IR). Then
u(·, 0)=u0(·) on IR.

Proof. Let ϕ∈C1(Q) such that ϕ(x, t) = 0 for t� δ and for large |x|. Integration by parts of (2.3)
gives

−
∫

IR×(0,δ)
{ut + (f(u))x}ϕdxdt+

∫
IR
{u0(x) − u(x, 0)}ϕ(x, 0)dx = 0 .

The first term is zero. The second term implies u0(·)=u(·, 0) on IR.

Thus the definition of a weak solution is a true generalization of the classical concept of a solution.

x

t

ϕ = 0

ut + fx = 0

ut + fx = 0 x(t) : Smooth curve across which

P2

P1

u is discontinuous

Nl

Nr

Figure 2.7. Discontinuities
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2.3. WEAK SOLUTIONS AND SHOCKS 17

What about discontinuities? Suppose we have a situation as in Figure 2.7. Let ϕ∈C∞
0 (N), N ⊂Q.

From (2.3) we have

0 =
∫

N
{uϕt + f(u)ϕx} dxdt =

∫
Nl

{uϕt + f(u)ϕx}dxdt+
∫

Nr

{uϕt + f(u)ϕx} dxdt .

Moreover∫
Nl

{uϕt + f(u)ϕx}dxdt =
∫

Nl

{(uϕ)t + (f(u)ϕ)x} dxdt

=
∫

∂Nl

ϕ {−udx+ f(u)dt} =
∫ P2

P1

ϕ {−uldx+ f(ul)dt} ,

and ∫
Nr

{uϕt + f(u)ϕx} dxdt = −
∫ P2

P1

ϕ {−urdx+ f(ur)dt} ,

where ul =u(x(t)−, t) and ur =u(x(t)+, t). Therefore

0 =
∫ P2

P1

ϕ{[u]dx− [f(u)]dt} for all ϕ ∈ C∞
0 (N) ,

which implies
dx
dt

=
[f(u)]

[u]
=
f(ur) − f(ul)

ur − ul
.

Remark 2.6. The conservation law has a divergent structure. Let

div :=
(
∂

∂x
,
∂

∂t

)
and q :=

(
f(u), u

)
.

The integral identity (2.3) gives
divq = 0 in D′(Q) ,

by which we mean ∫
Q

q · gradϕdxdt = 0 for all ϕ ∈ C∞
0 (Q) .

This expression is well-defined because q∈(L∞(Q))2. At points where q is smooth we have divq=0
(classically), across smooth curves where q is discontinuous we have

(qr − ql) · n = 0 ,

where n is the normal unit vector (see Figure 2.8)

n = − cosα ex + sinα et .

This gives
dx
dt

= tanα =
(qr − ql)x
(qr − ql)t

=
[f(u)]

[u]
.
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18 2 THE EQUATION ut+(f(u))x =0

x(t)
et

n

ex

α

Figure 2.8. Normal unit vector along curve

The concept of a weak solution clearly unifies the differential equation and the Rankine–Hugoniot
shock condition. The question we now pose relates to uniqueness. Does Definition 2.3 imply unique-
ness for a given initial condition u0? The answer is negative as can be seen from the following
example.

Example 2.7. Consider the Burgers equation with ν=0,

ut +
(
u2

2

)
x

= 0 in Q ,

with

u(x, 0) =

{
0 for x < 0 ,
1 for x > 0 .

Here the shock-condition is given by

dx
dt

=
f(ur) − f(ul)

ur − ul
=
ur + ul

2
.

One easily constructs the following solutions, see also Figure 2.9,

u1(x, t) =

{
0 for x < t/2
1 for x > t/2 ,

and

u2(x, t) =

⎧⎪⎨⎪⎩
0 for x � 0
x/t for 0 < x < t

1 for x � t .

Example 2.8. Consider again

ut +
(
u2

2

)
x

= 0 in Q ,

now with

u(x, 0) =

{
1 for x < 0
−1 for x > 0 .
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2.3. WEAK SOLUTIONS AND SHOCKS 19

t t

x x

u1 = 1

u0 = 0 u0 = 1 u0 = 1u0 = 0

u2 = 1u2 = 0

x(t) = t
2

u2 = x
t

u1 = 0

Figure 2.9. Solutions of Example 2.7

For each α�1, this problem has a solution uα given by

uα(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for x <
1 − α

2
t ,

−α for
1 − α

2
t < x < 0 ,

+α for 0 < x <
α− 1

2
t ,

−1 for x >
α− 1

2
t .

t

x
u = 1 u = −1

u = −1u = 1

u = αu = −α

Figure 2.10. Solutions of Example 2.8

The solutions u1 and uα, with α>1, contain shocks for which ul<ur. From what we have learned in
Section 1.1, these shocks cannot be obtained from a travelling wave type argument when the viscosity
parameter ν tends to zero. We therefore expect that these solutions have no physical meaning.

Also from the point of view of characteristics such solutions are not likely to be physically meaningful,
because characteristics on both sides of the shock diverge from the shock. Following LAX [45, 46]
we now reject the solutions u1 and uα (α>1) for failure to satisfy the following criterion, see Figure
2.11:

Characteristics starting on either side of the shock curve, when continued in the direction
of positive t, intersect this shock curve.
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20 2 THE EQUATION ut+(f(u))x =0

x(t)

Figure 2.11. Shock criterion of Lax

This will be the case if

f ′(ul) >
dx
dt

=
f(ur) − f(ul)

ur − ul
> f ′(ur) .

Because f ′′>0 this means that

ul > ur . (2.4)

Thus in addition to the Rankine–Hugoniot condition (2.2) we require that inequality (2.4) holds across
a shock. For historical reasons we refer to condition (2.4) as the (Lax) entropy condition.

Condition (2.4) is a local condition at the shock. OLEINIK [56] replaced it by the following global
entropy condition:

u(x+ a, t) − u(x, t)
a

� E

t
for all a > 0 and for all (x, t) ∈ Q , (2.5)

where E is a positive constant independent of x, t and a.

Later on we show uniqueness for the initial value problem (P) within the class of weak solutions sat-
isfying the entropy condition (2.5). We call the corresponding solution the weak entropy solution.

For convex flux functions f , inequality (2.5) captures the behaviour along characteristics as well as
the Lax shock inequality (2.4). For smooth solutions we must have u′0 � 0 (see Proposition 2.1) and
the method of characteristics gives

ux =
u′0

1 + f ′′(u)u′0t
.

Thus if u′0 =0, then ux =0 along the corresponding characteristic and if u′0>0 then

ux <
u′0

f ′′(u)u′0t
=

1
f ′′t

� E

t
with E =

1
inf f ′′

.

If a shock occurs at some t > 0, then (2.5) implies (taking a sufficiently small) that the solution can
only jump downwards, giving ul>ur.

When dealing with discontinuous solutions, we have to be careful with the application of transforma-
tions.
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2.4. RAREFACTION WAVES 21

Proposition 2.9. Let u be a smooth solution of equation (2.1). Then v := f ′(u) satisfies the Burgers

equation vt+
(

v2

2

)
x
=0.

Proof. Write the equation as
ut + f ′(u)ux = 0 .

Multiplication by f ′′ gives
f ′′(u)ut + f ′(u)f ′′(u)ux = 0 .

Then set v=f ′(u) and obtain
vt + vvx = 0 in Q .

Remark 2.10. Proposition 2.9 does not hold in general for discontinuous solutions. This can be seen
if we compare the shock speeds. The original equation gives

dx
dt

=
[f ]
[u]

=
f(ur) − f(ul)

ur − ul
.

The transformed equation gives

dx
dt

=
[12v

2]
[v]

=
vr + vl

2
=
f ′(ur) + f ′(ul)

2
.

f(u)

u
ur ul

Figure 2.12. Shock speeds for original and transformed equation

Remark 2.11. When f ∈C2(IR) and f ′′< 0 (concave), the entropy condition becomes ul <ur; the
only physically admissible shocks are those across which u increases.

2.4 Rarefaction waves

Let −∞<ul<ur<∞ and consider the initial value problem (Riemann problem)

(R)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut +

(
f(u)

)
x

= 0 in Q ,

u(x, 0) =

{
ul x < 0 ,
ur x > 0 .
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22 2 THE EQUATION ut+(f(u))x =0

We first give an intuitive argument. Let u= u(x, t) denote the unique entropy solution of (R). Then
for each k>0, the scaled functions

uk(x, t) = u(kx, kt)

are also solutions of (R) satisfying the entropy condition. Then uniqueness gives

u(x, t) = uk(x, t) = u(kx, kt) for all k > 0 and for all (x, t) ∈ Q .

Thus

u(x,
1
k
) = u(kx, 1) for all k > 0 and x ∈ IR .

Consequently u must be of the form

u(x, t) = r(η) with η =
x

t
.

Formally this gives for r the equation

−ηdr
dη

+
d
dη
f(r) =

{−η + f ′(r)
} dr

dη
= 0 in IR (2.6)

and the boundary conditions

r(−∞) = ul , r(+∞) = ur . (2.7)

A solution of this boundary value problem (in an appropriate sense) is called a rarefaction wave.

Example 2.12. Construction of rarefaction wave for the case 0 � ul < ur <∞ and f(u) = up for
u�0 with p>1. This leads to the boundary value problem⎧⎨⎩

{−η + p rp−1
} dr

dη
= 0 in IR ,

r(−∞) = ul , r(+∞) = ur .

We obtain as a solution

r(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ul for η � η l := pup−1
l ,(

η

p

)1/(p−1)

for η l < η < ηr := pup−1
r ,

ur for η � η r .

Observe that

u(x, t) :=

⎧⎪⎨⎪⎩
ul for x < 0, t = 0 ,
r(x/t) for (x, t) ∈ Q ,

ur for x > 0, t = 0 ,

satisfies
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2.4. RAREFACTION WAVES 23

η

ur

η l η r

ul

(
η

p

)1/(p−1)

Figure 2.13. Construction for p > 1

(i) u∈C (
Q\O)

and as in Figure 2.14:

u =

⎧⎪⎨⎪⎩
ul for x � η lt ,

u ∈ (ul, ur) and u is C∞ for η lt < x < η rt ,

ur for x � η rt ;

(ii) ut+(f(u))x =0 in Q except when x=η lt and x=η rt;

(iii) for t>0 and η lt<x<η rt we have

ux(x, t) =
1

(p− 1) p

(
x

pt

) 2−p
p−1 1

t
;

This gives for 1<p�2

ux(x, t) � 1
(p− 1) p

(
η r

p

) 2−p
p−1 1

t
=

1
(p− 1) p

u2−p
r

1
t
,

and for p>2 and ul>0

ux(x, t) � 1
(p− 1) p

(
η l

p

)2−p
p−1 1

t
=

1
(p− 1) p

u2−p
l

1
t
.

Note that the results of (iii) imply that the rarefaction wave satisfies the Oleinik entropy condition
(2.5).
We want to derive the appropriate weak form for the boundary value problem (2.6), (2.7). This weak
form allows us to consider equation (2.6) for a larger class of nonlinearities f . The starting point is
the weak formulation for (R):

Find u∈L∞(Q), ul �u�ur a.e. in Q, such that∫
Q
{uϕt + f(u)ϕx}dxdt+ ul

∫ 0

−∞
ϕ(x, 0)dx+ ur

∫ ∞

0
ϕ(x, 0)dx = 0

for all admissible test functions.
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24 2 THE EQUATION ut+(f(u))x =0

u = r(x
t
)

x

t

u = ul

x = η lt

x = η rt

u = ur

Figure 2.14. Rarefaction wave

Suppose this problem has a unique weak entropy solution u, which satisfies u ∈ C(Q\O) and
u(x, 0) = ul for x < 0 and u(x, 0) = ur for x > 0. Again by a simple scaling argument one finds
that

uk(x, t) := u(kx, kt)

is also a weak entropy solution for any k>0. As before this implies that the weak solution must be of
the form

u(x, t) = r(η) with η =
x

t
,

where r ∈ L∞(IR)∩C(IR). The initial condition and continuity imply that r satisfies the boundary
conditions (2.7). In the integral identity we now choose test functions as in Figure 2.15: i.e.

ϕ(x, t) = ϕ1(η) · ϕ2(t) ,

where ϕ1∈C∞
0 (IR) and ϕ2∈C∞

0 (IR+). For these test functions we have∫
Q
{uϕt + f(u)ϕx} dxdt = 0 .

Since

ϕt = −dϕ1

dη
η
1
t
ϕ2 + ϕ1

dϕ2

dt
and

ϕx =
dϕ1

dη
1
t
ϕ2 ,

we obtain ∫ ∞

0

{∫
IR

(
r (η)

[
t
dϕ2

dt
ϕ1 − η

dϕ1

dη
ϕ2

]
+ f (r)

dϕ1

dη
ϕ2

)
dη

}
dt = 0

or ∫ ∞

0
t
dϕ2

dt

(∫
IR
rϕ1dη

)
dt+

∫ ∞

0
ϕ2

{∫
IR

(f (r) − ηr)
dϕ1

dη
dη

}
dt = 0 .

The inner integrals (with respect to η) do not depend on t. We therefore can integrate the first term by
parts. This leads to the following integral identity for r (dropping the index 1 for convenience):∫

IR

{
(f (r) − ηr)

dϕ
dη

− rϕ

}
dη = 0 for all ϕ ∈ C∞

0 (IR) . (2.8)

Version September 15, 2003



2.4. RAREFACTION WAVES 25

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

x

t

supp(ϕ)

Figure 2.15. The test function ϕ(x, t) = ϕ1(η) · ϕ2(t)

Definition 2.13. (Weak formulation for rarefaction wave) A function r : IR→ IR is called a rarefaction
wave corresponding to boundary conditions (2.7) if

(i) r ∈ C ((−∞,∞))

(ii) r ∈ [ul, ur] and r(−∞) = ul, r(+∞) = ur

(iii) r satisfies identity (2.8).

Because r∈C(IR), identity (2.8) implies

f(r) − ηr ∈ C1(IR) (2.9a)

and thus

d
dη

{f(r) − ηr} + r = 0 on IR (2.9b)

in the classical sense. To obtain (2.9b), we first write equation (2.8) as∫
IR

{
f(r) − ηr +

∫ η

0
r(s)ds

}
dϕ
dη

dη = 0

and use the following lemma.

Lemma 2.14. Let I⊆ IR be an interval and let h∈L1
loc(I). Suppose∫

I
h

dξ
dη

= 0 for all ξ ∈ C∞
0 (I) .

Then h is constant a.e. in I .

Proof. Let ϕ,ϕ1∈C∞
0 (I) such that

∫
I
ϕ1 =1. Set

ξ(η) =
∫ η

∂I

{
ϕ1(x)

∫
I
ϕ− ϕ(x)

}
dx .

Then
dξ
dη

= ϕ1

∫
I
ϕ− ϕ
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26 2 THE EQUATION ut+(f(u))x =0

and ∫
I

{
hϕ1

∫
I
ϕ

}
=

∫
I
hϕ .

Next let c :=
∫

I
hϕ1. Then ∫

I
cϕ =

∫
I
hϕ , for all ϕ ∈ C∞

0 (I) ,

which implies that h=c a.e in I .

Proposition 2.15. Let f ∈ C2((ul, ur))∩C([ul, ur]) satisfy f ′′ > 0. Then there exists a rarefaction
wave r of the form

r(η) =

⎧⎪⎨⎪⎩
ul for η � η l ,

(f ′)−1 (η) for η l < η < η r ,

ur for η � η r ,

(2.10)

where η l :=f ′r(ul)�−∞ and η r :=f ′l (ur)�+∞.

Proof. The assumptions on f imply that f ′ is C1 and strictly increasing (f ′′>0) on (ul, ur). Conse-
quently, the right limit at ul and the left limit at ur satisfy:

lim
u↓ul

f ′(u) = f ′r(ul) � −∞ and lim
u↑ur

f ′(u) = f ′l (ur) � +∞ ,

Let A⊆ IR denote the range of f ′: i.e.

A = {a ∈ IR : ∃u ∈ (ul, ur) such that f ′(u) = a} .
Clearly A=(f ′r(ul), f ′l (ur))=(η l, η r). We now define r : (η l, η r)→ IR by

η = f ′(r(η)) or r(η) = (f ′)−1(η) for η ∈ (η l, η r) .

Then r∈(ul, ur) and
lim
η↓η l

r(η) = ul and lim
η↑η r

r(η) = ur .

We extend this function by ul for η� η l (if η l >−∞) and by ur for η� η r (if η r <∞) and obtain
(2.10). To show that indeed (2.10) is a rarefaction wave, we verify the conditions of Definition 2.13.
From the construction we immediately see that (i) and (ii) are satisfied. To verify (iii) we show that r
satisfies (2.9). The smoothness conditions on f imply

r ∈ C1(η l, η r) with r′(η) =
1

f ′′(r(η))
, for η l < η < η r .

Hence (2.9) is satisfied on (η l, η r). Suppose η l>−∞. Obviously (2.9) is also satisfied in (−∞, η l).
At η=η l we have

(f(r) − ηr)′(η l−) = −ul

and

(f(r) − ηr)′(η l+) = lim
η↓η l

{
f ′(r(η))

dr
dη

− η
dr
dη

− r(η)
}

= −ul .

Thus f(r)− ηr is differentiable at η l and satisfies (2.9b). A similar result holds at η r.
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2.4. RAREFACTION WAVES 27

Next we drop the smoothness condition on f . We assume below that f : [ul, ur]→ IR is strictly
convex and continuous up to the endpoints. For this case we have to revise expression (2.10). Before
we do this we first give some properties of f :

(i) f strictly convex on [ul, ur] means that for all u, v∈ [ul, ur] and for all λ∈(0, 1)

f(λu+ (1 − λ)v) < λf(u) + (1 − λ)f(v) ;

(ii) f ∈C([ul, ur]);

(iii) for any u∈ [ul, ur), f ′r(u) exists (f ′r(ul)=−∞ possible) and f ′r(·) is strictly increasing;
for any u∈(ul, ur], f ′l (u) exists (f ′l (ur)=+∞ possible) and f ′l (·) is strictly increasing;
for any u∈(ul, ur), f ′r(u)�f ′l (u);
for any u, v∈(ul, ur) with u<v, f ′r(u)<f ′l (v).

We introduce the subgradient of f in a point u∈(ul, ur) as the interval

∂f(u) :=
{
k ∈ IR : f ′l (u) � k � f ′r(u)

}
.

This leads to the subgradient of f on (ul, ur) as the graph ∂f(u) for ul < u < ur. Note that if f is
differentiable in u0∈(ul, ur), then

∂f(u0) = f ′(u0) ,

i.e. the subgradient consists of one point only.

Example 2.16. Let f : IR→ IR be given by

f(x) = |x| + x2

2
for x ∈ IR .

Then the subgradient is the graph

∂f(x) =

⎧⎪⎨⎪⎩
−1 + x x < 0 ,
[ − 1, 1] x = 0 ,
1 + x x > 0 .

The last property in (iii) implies that ∂f(·) is a strictly increasing graph. Let again A⊆ IR denote the
range of ∂f : i.e.

A =
{
a ∈ IR : ∃u ∈ (ul, ur) such that ∂f(u) � a

}
.

Then again
A =

(
f ′r(ul), (f ′l (ur)

)
= (η l, η r) .

We now define r : (η l, η r)→ IR by

η ∈ ∂f(r(η)) or r(η) = ∂f−1(η) .

Then r∈C((η l, η r)) and r is non-decreasing with ul<r<ur on (η l, η r). Further

lim
η↓η l

r(η) = ul and lim
η↑η r

r(η) = ur .

On the remaining intervals (−∞, η l] and [η r,∞) (if they exist) we extend r by the constants ul and
ur, respectively. We have
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28 2 THE EQUATION ut+(f(u))x =0

Proposition 2.17. Let f : [ul, ur] → IR be strictly convex and continuous up to the endpoints. Then
there exists a rarefaction wave of the form

r(η) =

⎧⎪⎨⎪⎩
ul for η � η l ,

∂f−1(η) for η l < η < η r ,

ur for η � η r .

(2.11)

Proof. We have to check that (2.11) is a rarefaction wave in the sense of Definition 2.13. This is done
by regularizing f , applying Proposition 2.15 and passing to the limit. We omit the details.

2.5 Irreversibility

We show here by means of an example that the backwards problem is ill-posed.

t t t

x x x
1
2

1 1 1

1
2

1
4

1
2

u = 1 u = 0 u = 1 u = 0 u = 1 u = 0

−1
4

ε = 0 ε = 1
2

ε = 1

Figure 2.16. Ill-posedness of the backwards problem

Example 2.18. Consider the equation ut+
(

u2

2

)
x
=0 in Q. For 0�ε�1 we have the family of weak

entropy solutions

uε(x, t) =

⎧⎪⎨⎪⎩
1 for x � t− ε/2 ,
(x− ε/2)/(t − ε) for t− ε/2 < x < ε/2 ,
0 for x � ε/2 ,

for t � ε ,

and

uε(x, t) =

{
1 for x < t/2 ,
0 for x > t/2 ,

for t > ε .

All these solutions coincide identically for t� 1, although they emerge from different initial values.
We show later that the solution operator defines a compact map from L∞(IR) into L1

loc(IR): i.e. if we
denote the weak entropy solution of (P) by u(t;u0), then u(t; ·) :L∞(IR)→L1

loc(IR) is compact for
all t>0. Hence the inverse cannot be continuous.
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3 Decay of the entropy solution

Here we consider the large time behaviour of solutions of the problem

(P)

{
ut + (f(u))x = 0 in Q ,

u(·, 0) = u0(·) on IR .
(3.1)

Define the following constants

k := f ′′(0) and µ := min
[−M,M ]

f ′′ > 0 (3.2)

and
M := sup

IR
|u0| .

We suppose that

H1: u0 is piecewise C1 and piecewise monotone in IR with compact support.

H2: f ∈C2([−M,M ]) with f ′′>0.

Let u denote the weak entropy solution of (P). By regularity theory, see for instance SCHAEFFER [65],
we may assume that u is piecewise C1 in Q and that shock curves, parametrized as functions of t, are
also C1, except at points where they collide to form a new shock.

We start with some general observations.

1. Regularity implied by inequality (2.5). Since u, possibly redefined on a set of measure zero, fulfils

u(x+ a, t) − u(x, t)
a

� E

t
for (x, t) ∈ Q ,

the function v(x, t) :=u(x, t) − E

t
x satisfies for all a>0

v(x+ a, t) − v(x, t) = u(x+ a, t) − u(x, t) − E

t
a � 0 .

Hence v(·, t) is non-increasing on IR, which implies that u(·, t) ∈ BVloc(IR) for all t > 0. In other
words, u(·, t) is locally of bounded variation. From this we deduce
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30 3 DECAY OF THE ENTROPY SOLUTION

(i) u(x+, t), u(x−, t) exist;

(ii) discontinuities in u(·, t) occur in the form of jumps;

(iii) jumps are countable;

(iv) VIR u(·, t)�∑
jumps.

Recall: f : [a, b]→ IR has bounded variation if

Va,b f = sup
P

n∑
i=1

|f(xi) − f(xi−1)| <∞ .

Here P denotes the partition {x0, x1, ..., xn} with a=x0<x1<...<xn = b. The supremum is taken
with respect to all partitions of the interval [a, b].

x

t

0

y2

x1 x2

t = t1

y1

u ∈ C1 u ∈ C1

ul ur

urul

Figure 3.1. Monotonicity of variation

2. Suppose we have a situation as sketched in Figure 3.1. By the method of characteristics we have
that

u(·, 0) on (x1(0), y1(0)) and u(·, t1) on (x1(t1), y1(t1))

are equivariant: i.e. the same values of u occur in the same order. This implies for the variations

Vx1(t1),y1(t1)u(·, t1) = Vx1(0),y1(0)u(·, 0) for all t1 > 0 .

Similarly one has

Vy2(t1),x2(t1)u(·, t1) = Vy2(0),x2(0)u(·, 0) for all t1 > 0 .

Since
Vy1(0),y2(0)u(·, 0) � ul − ur > 0 ,

we have
Vx1(t1),x2(t1)u(·, t1) � Vx1(0),x2(0)u(·, 0) for all t1 > 0 .

Hence the variation of u(·, t) is non-increasing with respect to t. This property gives the smoothing
effect of the equation (or the characteristics).
3. For each (x, t)∈Q, the limits u(x−, t) and u(x+, t) exist. As shown in Figure 3.2, the character-
istics through (x, t) with slopes f ′(u(x−, t)) and f ′(u(x+, t)) can be traced backwards in time up to
t=0. This is due to the entropy condition. We conclude that supIR u(·, t)�supIR u0 for all t>0.
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t

x

(x, t)

f ′(u(x−, t)) f ′(u(x+, t))

Figure 3.2. Boundedness of solution

4. For all t>0, u(·, t) has compact support. This follows from the maximum signal speed f ′(M) and
the minimum signal speed f ′(−M), see Figure 3.3 and also the proof of Proposition 3.2.

x
u0 = 0u0 = 0

u = 0

f ′(−M)

u = 0

f ′(M)

Figure 3.3. Support of solution

In the remainder of this chapter we study the boundary of the support and the large time behaviour of u.

Without loss of generality we may set

f(0) = f ′(0) = 0 .

To see this we first transform according to:

f̃(u) = f(u) − f(0) − f ′(0)u .

This gives {
ut + (f̃(u))x + f ′(0)ux = 0 in Q ,

u(·, 0) = u0(·) on IR .

Then we set
v(x, t) = u(x+ f ′(0)t, t) ,

or
u(x, t) = v(x− f ′(0)t, t) .

For v we find {
vt + (f̃(v))x = 0 in Q ,

v(·, 0) = u0(·) on IR .
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32 3 DECAY OF THE ENTROPY SOLUTION

We introduce the following two numbers

q = max
y

∫ ∞

y
u0(x)dx

and

−p = min
y

∫ y

−∞
u0(x)dx .

Clearly p, q�0. For t�0 we define

s+(t) := inf {y : u(x, t) = 0 for all x > y} .
When u0 �≡0 this is well-defined. Let s+ :=s+(0) and u+(t) :=u(s+(t)−, t). Obviously u(s+(t)+, t)≡
0 for all t>0. According to the entropy condition we must have u+(t)�0 for t>0. In fact, we have

u+(t) = 0 if and only if x = s+(t) is a point of continuity of u(·, t).
Proposition 3.1. s+ is non-decreasing in IR+.

Proof. We argue by contradiction. Let 0� t1<t2<∞ and suppose s+(t1)>s+(t2) as in Figure 3.4.
Take any x0∈ (s+(t2), s+(t1)). Clearly u(x0, t2)=0. Then f ′(0)=0 implies that u(x0, t)≡0 for all
0� t� t2. Since x0 was chosen arbitrarily we also have

u(x, t1) = 0 for all s+(t2) < x < s+(t1) ,

contradicting the definition of s+(t1).

t

x

u = 0

s+(t1)s+(t2)

t2

t1

x0

Figure 3.4. Monotonicity of support (1)

Proposition 3.2. s+ is uniformly Lipschitz continuous on [0,∞).

Proof. For any t0 �0, consider the line

x− s+(t0) = f ′(M)(t− t0) .

Now suppose there exists a point (x∗, t∗) to the right of this line, with t∗>t0, at which u(x∗, t∗) �=0.
The characteristic passing through this point is also to the right of the line. This contradicts the
definition of s+(t0).
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t̂

t̄

t0

t∗

x

s+
f ′(ε)

s+(t∗)x∗s+(t∗) − δs+(t0)

t

Figure 3.5. Monotonicity of support (2)

Proposition 3.3. Suppose s+ is constant in some interval I⊂ IR+. Then inf I=0.

Proof. As in Figure 3.5 let us assume t∗ = inf I > 0. Then there exists a point t0 ∈ (0, t∗) such that
s+(t0)< s+(t∗). Since s+ is constant on I , it follows that u+(t∗) = 0 and x= s+(t∗) is a point of
continuity of u(·, t∗). Since u is piecewise C1 (and hence piecewise defined) in Q, we have for given
ε>0 that there exists δ>0 such that

−ε < u(x, t∗) < ε for s+(t∗) − δ < x < s+(t∗) .

Now choose ε and δ so that the line

x− (s+(t∗) − δ) = f ′(ε)(t∗ − t)

intersects s+ in t∈ (t0, t∗). Let x∗∈ (s+(t∗) − δ, s+(t∗)), such that u(x∗, t∗) �=0. The characteristic
going backwards from this point has to intersect s+ in the interval (t̄, t∗), leading to a contradiction.
Hence t∗=0.

We can now introduce the waiting time

T := sup
{
t � 0 : s+(t) = s+

}
.

As a consequence of Proposition 3.3 we have

Corollary 3.4. s+ is strictly increasing in [T,∞).

Next we estimate the growth of s+. We first consider the trivial case

Proposition 3.5. If q=0 then u+(t)≡0 and s+(t)≡s+ for all t>0.

Proof. Suppose not. Then there exists a t̄ such that ū :=u+(t̄)>0. Since f ′(ū)>0, a construction as
in Figure 3.6 is possible. Since u is piecewise C1 in Q, the divergence theorem can be applied. This
gives

0 =
∫

R
(ut + f(u)x) =:

∫
R

divq =
∫

∂R
q·n . (3.3)
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x
y

t̄

u = 0Γ1

u = u+(t̄) = ū

t

R

s+(t̄)u = u0

Γ2

Γ3

Figure 3.6. Construction related to q = 0

Using ∫
Γ1

q·n = ∆l(−f(ū) cosα+ ū sinα) = ∆l cosα(f ′(ū)ū− f(ū))

= t̄(f ′(ū)ū− f(ū)) ,∫
Γ2

q·n = −
∫ s+

y
u0(x)dx = −

∫ ∞

y
u0(x)dx

and ∫
Γ3

q·n = 0 ,

we obtain

t̄(f ′(ū)ū− f(ū)) =
∫ ∞

y
u0(x)dx . (3.4)

The convexity of f gives
f(ū)
ū

< f ′(ū) ,

which implies ∫ ∞

y
u0(x)dx > 0 .

This contradicts q=0. Hence ū=0. Since f ′(0)=0, the assertion for s+ is immediate.

More interesting is the case

Proposition 3.6. If q>0 then s+(t)�s++c
(

2q
µ

) 1
2
t

1
2 for all t�0, where c= max

[−M,M ]
f ′′.
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Proof. If u+(t)>0 for some t>0, it follows from (3.4) that

f ′(u+)u+ − f(u+) � q

t
. (3.5)

Since for any a∈ IR

0 = f(0) = f(a) + f ′(a)(0 − a) +
1
2
f ′′(ξ)a2 � f(a) − af ′(a) +

1
2
µa2 , (3.6)

we find

u+(t) �
(

2q
µ

) 1
2

t−
1
2 .

Using

ṡ+(t) =
f(u+(t))
u+(t)

=
f ′′(θ)

2
u+(t) for 0 < θ < u+(t) , (3.7)

we obtain

ṡ+(t) � c

2

(
2q
µ

) 1
2

t−
1
2 .

Here ˙ means differentiation with respect to t. The estimate follows after integration.

For the left boundary we find similar results. If we define for t�0

s−(t) := sup{y : u(x, t) = 0 for all x < y} ,

with s−=s−(0) we obtain:

p = 0 ⇒ s−(t) = s− for all t � 0 ; (3.8a)

p > 0 ⇒ s−(t) � s− − c

(
2p
µ

) 1
2

t
1
2 for all t � 0 . (3.8b)

The spreading of the support of u is sketched in Figure 3.7.

The decay of the solution follows from an argument with characteristics. For any (x0, t0), with t0>0
and s−(t0)<x0<s

+(t0), consider the two characteristics x±, satisfying

x±(t) = x0 + f ′
(
u(x0±, t0)

)
(t− t0) .

They intersect the x−axis at y± satisfying

s− � y− � y+ � s+ .
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u0

x

x

x

x

u0 t

t

x x

u0

t

u = 0 u = 0

s+(t)

u < 0 u > 0

u = 0

s+(t)s−(t)

u > 0

s−(t) s+(t)

u = 0u = 0

u < 0 u = 0

s−(t)

Figure 3.7. Spreading of the support of u

Thus

|f ′(u(x0±, t0)
)| =

∣∣∣∣y± − x0

t0

∣∣∣∣ � 1
t0

max
{
(s+(t0) − s−), (s+ − s−(t0))

}
� (s+ − s−) + Const t0

1
2

t0

� Const t0−
1
2

for t0 sufficiently large. But |f ′(a)|=
∣∣∣∣∫ a

0
f ′′(s)ds

∣∣∣∣�µ|a|. Hence |u(x0, t0)|� Const t0−
1
2 . Thus

we have shown

Theorem 3.7. Let H1 and H2 be satisfied such that f(0)=f ′(0)=0. Then

‖u(·, t)‖L∞(IR) = O(t−
1
2 ) as t→ ∞ .
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Next we determine the asymptotic profile. For technical reasons we need f ∈C3((−M,M)). From
(3.5)–(3.7) we obtain

ṡ+(t) =
f ′′(θ)

2
u+(t) � 1

2
f ′′(θ)

{f ′′(ξ)} 1
2

(
2q
t

) 1
2

,

where 0<θ, ξ<u+(t). Hence θ, ξ=O(t−
1
2 ). The smoothness of f gives

ṡ+(t) �
(
qk

2t

) 1
2

+ O(t−1) for t > 0 ,

from which we deduce

s+(t) � s+ + (2qkt)
1
2 + O(ln t) for t > 0 .

Similarly
s−(t) � s− − (2pkt)

1
2 + O(ln t) for t > 0 .

Next we define the functions

w(x, t) =

⎧⎪⎨⎪⎩
x

kt
for t > 0 and s− − (2pkt)

1
2 < x < s+ + (2qkt)

1
2

0 elsewhere
(3.9)

and

w̃(x, t) =

⎧⎪⎨⎪⎩
x

kt
for t > 0 and s−(t) < x < s+(t)

0 elsewhere .
(3.10)

The goal is to find an estimate for u−w. Using again the method of characteristics we obtain for any
(x, t) ∈Q with t > 0, s−(t)<x< s+(t) and u continuous at (x, t), a unique y = y(x, t) ∈ (s−, s+)
such that

f ′(u(x, t)) =
x− y(x, t)

t
.

This implies

f ′′(0)u(x, t) + O(u2) =
x− y(x, t)

t
and thus

u(x, t) =
x

kt
+ O(t−1) for t > 0 and s−(t) < x < s+(t) .

At points where u is discontinuous we take the left or right limit in the above expressions. Hence for
t>0 and sufficiently large

‖u(·, t) − w̃(·, t)‖L1(IR) :=
∫

IR
|u(x, t) − w̃(x, t)|dx � Const t−1(s+(t) − s−(t))

� Const t−1(1 + t
1
2 + ln t)

� Const t−
1
2 .

Similarly we obtain, again for t sufficiently large,

‖w(·, t) − w̃(·, t)‖L1(IR) � Const t−
1
2 .

Combining these estimates we have the convergence result
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Theorem 3.8. Suppose in addition f ∈C3((−M,M)). Then

‖u(·, t) −w(·, t)‖L1(IR) = O(t−
1
2 ) as t→ ∞ .

The function w is called a N -wave because of its profile at each fixed t>0.

0
x

s+ + (2qkt)
1
2

x

kt

w

s− − (2pkt)
1
2

kt

s+ + (2qkt)
1
2

kt
s− − (2pkt)

1
2

Figure 3.8. N-wave

Remark 3.9. Suppose we take s+ =s−=0 in the expression for w. Then∫
IR
|w(x, t)|dx = p+ q for all t > 0 . (3.11)

This is consistent with the following observation. For s+ =s−=0, w satisfies the equation

wt +
(

1
2
kw2

)
x

= 0 in Q (3.12)

and

lim
t↓0

w(x, t) = −pδ(0−) + qδ(0+) . (3.13)

Thus the N-wave is the dipole solution of the Burgers equation with f(u)= 1
2ku

2. If u0 is as in Figure
3.7 (bottom), it follows that ∫

IR
|u(x, t)|dx = p+ q (p, q > 0) (3.14)

as well. In that case the L1-norm of u and w are the same for all t>0 (or asymptotically the same if
s−<0<s+). Theorem 3.8 tells us how u redistributes as t increases.
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4 Uniqueness of the entropy solution

In this chapter we prove the uniqueness of the weak entropy solution of

(P)

{
ut +

(
f(u)

)
x

= 0 in Q

u(·, 0) = u0(·) on IR .

We recall that a weak solution of this initial value problem satisfies

(i) u∈L∞(Q);

(ii)
∫

Q
{uϕt+f(u)ϕx} dxdt+

∫
IR
u0(x)ϕ(x, 0)dx = 0 for all ϕ ∈ C1(Q) such that ϕ vanishes

identically for large |x| and large t. We denote this class of test functions by C1
0(t�0).

A weak entropy solution satisfies in addition (u possibly redefined on a set of measure zero)

u(x+ a, t) − u(x, t)
a

� E

t

for all (x, t)∈Q and for all a>0, where the constant E is positive and independent of x, t and a.

The uniqueness proof we present here is due to OLEINIK [56], see also SMOLLER [67]. We first give
the underlying idea.

Suppose u and v are two weak entropy solutions of (P), for the same initial value u0. Then∫
Q
{(u− v)ϕt + (f(u) − f(v))ϕx}dxdt = 0 for all ϕ ∈ C1

0(t � 0) ,

which we write as∫
Q
(u− v)

{
ϕt +

f(u) − f(v)
u− v

ϕx

}
dxdt = 0 for all ϕ ∈ C1

0 (t � 0) .

Here u and v are considered as known functions. Let

F (x, t) :=
f(u(x, t)) − f(v(x, t))

u(x, t) − v(x, t)
for (x, t) ∈ Q .
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Then we have ∫
Q
(u− v) {ϕt + Fϕx} dxdt = 0 for all ϕ ∈ C1

0 (t � 0) .

Now suppose we could solve the adjoint equation

ϕt + Fϕx = ψ ∈ C1
0 (Q)

for ϕ∈C1
0 (t�0). Then we would have∫

Q
(u− v)ψ dxdt = 0 for all ψ ∈ C1

0 (Q) ,

implying u=v a.e. in Q.

In general, however, u, v and thus F are not smooth and we cannot expect that the adjoint equation
has a smooth solution for arbitrary ψ. The way to proceed is to approximate u and v (and thus F ) by
smooth functions {un}n∈IN and {vn}n∈IN and then to solve the linear problem:

For n∈ IN, find ϕn∈C1
0 (t � 0) such that

(ϕn)t + Fn(ϕn)x = ψ ∈ C1
0(Q) in Q ,

where

Fn =
f(un) − f(vn)

un − vn
in Q .

Assuming that this problem has a solution (existence question), we find∫
Q
(u− v)ψ =

∫
Q
(u− v)(ϕn)t +

∫
Q
(u− v)Fn(ϕn)x

= −
∫

Q
{f(u) − f(v)} (ϕn)x +

∫
Q
(u− v)Fn(ϕn)x

=
∫

Q
(u− v) {Fn − F} (ϕn)x .

for all n∈ IN. We will show that Fn→F locally in L1(Q) and that (ϕn)x and supp(ϕn) are bounded,
uniformly in n∈ IN. Then passing to the limit in the right hand side gives∫

Q
(u− v)ψ = 0 ,

implying the uniqueness.

The convergence of {Fn}n∈IN is a direct consequence of the way we approximate the solutions u and
v. To establish the uniform bound on (ϕn)x we use the entropy condition.

Theorem 4.1. Suppose u and v are two weak entropy solutions of (P), in which f ∈C2([−M,M ])
and f ′′(s)>0 for s∈ [−M,M ] where M=max {‖u‖L∞ , ‖v‖L∞}.Then

u = v a.e. in Q .
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Proof. Given u, v∈L∞(Q), we define the approximations by convolutions. First introduce mollifiers
{ρn}n∈IN, which satisfy

(i) ρn∈C∞
0 (IR2);

(ii) ρn �0;

(iii)
∫

IR2
ρn =1;

(iv) supp(ρn)⊆B1/n(O).

Next we extend u and v to IR2 by

ũ =

{
u in Q ,

0 elsewhere ,
and ṽ =

{
v in Q ,

0 elsewhere ,

and we consider the approximations

un(x, t) := ρn � ũ(x, t) =
∫

IR2
ρn(y − x, τ − t)ũ(y, τ)dydt

and

vn(x, t) := ρn � ṽ(x, t) =
∫

IR2

ρn(y − x, τ − t)ṽ(y, τ)dydt

for (x, t)∈ IR2 and n∈ IN. These approximations satisfy for all n∈ IN

(i) un, vn∈C∞(IR2);

(ii) |un|�M and |vn|�M in IR2;

(iii) if ũ∈Lp(IR2), 1� p<∞, then un → ũ in Lp(IR2), i.e. ‖un−ũ‖Lp(IR2) → 0 as n→∞ (see
ADAMS [2]);

(iv) if u ∈ L∞(Q) then un → u in L1
loc(Q) as n → ∞. This means that for any K ⊂⊂ Q,

‖un−u‖L1(K)→0 as n→∞.

Property (iv) is a direct consequence of (iii) for p = 1. This we see as follows. Take an arbitrary
K⊂⊂Q and consider the function

u∗ =

{
u in K

0 in IR2\K .

Clearly u∗∈L1(IR2) and |u∗|�M in IR2. Define u∗n :=ρn � u
∗. Then by (iii)

‖u∗n − u∗‖L1(K) � ‖u∗n − u∗‖L1(IR) → 0 as n→ ∞ .
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42 4 UNIQUENESS OF THE ENTROPY SOLUTION

Hence
‖u∗n − u∗‖L1(K) → 0 as n→ ∞ .

Since un =u∗n in Kn (Kn is defined in Figure 4.1), we obtain from

un − u = un − u∗n + u∗n − u

that

‖un − u‖L1(K) � ‖un − u∗n‖L1(K) + ‖u∗n − u∗‖L1(K)

= ‖un − u∗n‖L1(K/Kn) + ‖u∗n − u∗‖L1(K) .

Clearly the right hand side converges to zero for n→∞. This implies the result.

t

x

K

1
n

1
n

1
n

1
n

Kn

Figure 4.1. Construction of rectangles Kn

Using the approximations un and vn we also define for n∈ IN

Fn :=
f(un) − f(vn)

un − vn
=

1
un − vn

∫ un

vn

f ′(s)ds in Q .

We transform the integral according to

s = ϑun + (1 − ϑ)vn , 0 � ϑ � 1 ,

which gives

Fn =
∫ 1

0
f ′ (ϑun + (1 − ϑ)vn) dϑ .

From this expression we obtain

∂Fn

∂x
=

∫ 1

0
f ′′ (ϑun + (1 − ϑ)vn)

(
ϑ
∂un

∂x
+ (1 − ϑ)

∂vn

∂x

)
dϑ

and consequently ∣∣∣∣∂Fn

∂x

∣∣∣∣ � 1
2

sup f ′′
{∣∣∣∣∂un

∂x

∣∣∣∣ +
∣∣∣∣∂vn

∂x

∣∣∣∣
}
.

A similar result holds for ∂Fn/∂t. Hence Fn is continuous differentiable in both arguments x and t,
with bounded derivatives in Q.
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Next we consider the existence question for the adjoint problem. Let ψ ∈ C∞
0 (Q) be given and let

T >0 be chosen such that ψ=0 for t>T . For arbitrary n∈ IN consider the linear problem{
(ϕn)t + Fn(ϕn)x = ψ in Q

ϕn(x, T ) = 0 for x ∈ IR .

We solve this problem using the method of characteristics. For arbitrary (x0, t0)∈Q, solve the initial
value problem ⎧⎪⎨⎪⎩

dxn

dt
= Fn(xn, t) for t ∈ IR+

xn(t0) = x0 .

Because Fn, ∂Fn/∂x and ∂Fn/∂t are bounded, there exists a unique solution xn(t) = xn(t;x0, t0),
which satisfies xn(t0;x0, t0) = x0 and which is continuous differentiable in all its arguments (see
standard ODE theory). The solution curve is the characteristic of the equation passing through the
point (x0, t0). Along this characteristic we solve for ϕn. First we write the equation as

d
dt
ϕn (xn(t;x0, t0), t) = ψ (xn(t;x0, t0), t) .

Then we integrate from T to t0 and obtain

ϕn (xn(t0;x0, t0), t0) = ϕn(x0, t0) =
∫ t0

T
ψ (xn(t;x0, t0), t) dt .

This function defines a classical solution (C1) of the partial differential equation which satisfies
ϕn(x, t) = 0 for t � T . Next we show that ϕn has compact support in IR, i.e. ϕn ∈ C1

0 (t � 0).

Because un and vn are uniformly bounded, there exists a positive constant A such that

|Fn| � A for all n ∈ IN .

Thus the slope of the characteristics is bounded by A. We use this to construct a region R ⊂ Q as
in Figure 4.2. Take any point (x0, t0) outside R. This means that the corresponding characteristic is
outside R. Hence ϕn is constant along the characteristic. Since ϕn(x, T ) = 0 this implies that ϕn is
zero outside R, showing that ϕn∈C1

0 (t�0).

t = T

t

x

slope 1
A

slope − 1
AR

supp(ψ)

Figure 4.2. The region R
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44 4 UNIQUENESS OF THE ENTROPY SOLUTION

Next we discuss the convergence of Fn towards F . We write

F − Fn =
∫ 1

0

{
f ′ (ϑu+ (1 − ϑ)v) − f ′ (ϑun + (1 − ϑ)vn)

}
dϑ

and use the mean value theorem to obtain

F − Fn =
∫ 1

0
f ′′(ξ)

{
ϑ(u− un) + (1 − ϑ)(v − vn)

}
dϑ .

This gives

|F − Fn| � 1
2

sup f ′′(s) {|u− un| + |v − vn|} .

Since {un} and {vn} converge in L1
loc(Q), the same is true for {Fn}.

It remains to verify the uniform bound on (ϕn)x in Q. Here the entropy condition will play a crucial
role. Let α > 0 and µ = 2α. We estimate (ϕn)x in the regions IR × [0, µ] and IR × [µ,∞). First
consider t�α. The entropy condition implies that

u(x, t) − Ex

α

is non-increasing in x for t� α. This follows from the observation that for any x1 < x2 and for all
t�α

0 �
(
u(x2, t) − Ex2

t

)
−

(
u(x1, t) − Ex1

t

)
= u(x2, t) − u(x1, t) +

E

t
(x1 − x2)

� u(x2, t) − u(x1, t) +
E

α
(x1 − x2) .

Set

u∗ =

{
u in {t � α}
0 in {t < α} .

The convolution

ρn �

(
u∗ − Ex

α

)
is non-increasing in x for all t∈ IR. Hence for u∗n :=ρn � u

∗ we have

∂u∗n
∂x

=
∂

∂x
(ρn � u

∗) � ∂

∂x

(
ρn �

Ex

α

)
= ρn ∗ E

α
=
E

α
in IR2 .

Similarly, v∗n :=ρn � v
∗ satisfies

∂v∗n
∂x

� E

α
in IR2 .

Choosing n sufficiently large (n>N(µ)) we have un =u∗n and vn =v∗n for t�µ and thus

∂un

∂x
� E

α
and

∂vn

∂x
� E

α
in IR × [µ,∞) .
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Consequently for n>N(µ)

∂Fn

∂x
� sup f ′′(s)

2E
µ

=: C(µ) in IR × [µ,∞) ,

where C(µ) is independent of n. Note: here we used the convexity of f . Let (x0, t0) ∈ IR × [µ, T ]
and consider the characteristic xn(t)=xn(t;x0, t0). Set

an(t) =
∂xn

∂x0
.

Since xn(t0;x0, t0)=x0 we have an(t0)=1. Further

dan

dt
=

∂

∂t

(
∂xn

∂x0

)
=

∂

∂x0
Fn(xn, t) =

∂Fn

∂x

∂xn

∂x0
=
∂Fn

∂x
an .

Integrating this equation yields

an(t) = exp
{∫ t

t0

∂Fn

∂x
(xn(τ), τ) dτ

}
for n ∈ IN and t ∈ IR

and thus for µ= t0<t<T and n>N(µ)

0 < an(t) < exp {C(µ)(T − µ)} .

Since
∂ϕn

∂x
=

∫ t

T

∂ψ

∂x
(xn(τ), τ)

∂xn

∂x
dτ =

∫ t

T

∂ψ

∂x
(xn(τ), τ) an(τ)dτ

we obtain the bound ∣∣∣∣∂ϕn

∂x

∣∣∣∣ � K(µ) in IR × [µ, T ] and for n > N(µ) .

Next we consider the strip IR × [0, µ]. For fixed t∈ [0, T ], the support of ϕn(·, t) is independent of n.
Hence the variation

Vt(ϕn) :=
∫

IR

∣∣∣∣∂ϕn

∂x

∣∣∣∣dx
is bounded by

Vt(ϕ) � K̃(µ) for t ∈ [µ, T ] and for n > N(µ) .

Now choose µ as in Figure 4.3: i.e. ψ = 0 in IR × [0, µ]. For this choice, ϕn is constant along the
characteristics if 0� t�µ. Since characteristics cannot intersect (Fn is locally Lipschitz) this implies

Vt(ϕn) = Vµ(ϕn) � K̃(µ) for 0 � t � µ and n > N(µ) .

t

x

supp(ψ)

µ

δ

Figure 4.3. Support of ψ
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46 4 UNIQUENESS OF THE ENTROPY SOLUTION

We now are in the position to complete the proof. For n>N(µ) we write∣∣∣∣∫
Q
(u− v)ψ

∣∣∣∣ �
∫

Q
|u− v| |Fn − F | |(ϕn)x|

=
∫
{0<t<δ}

|u− v| |Fn − F | |(ϕn)x| +
∫
{t�δ}

|u− v| |Fn − F | |(ϕn)x|

=: I1 + I2 .

First choose ε>0. Then choose δ sufficiently small (δ<µ), so that

I1 < 4MA

∫
{0<t<δ}

|(ϕn)x| = 4MA

∫ δ

0
Vt(ϕn)dt � 4MAK̃(µ)δ <

ε

2
.

The second term we estimate using the choice of δ:

I2 � 2M
∫
{t�δ}

|Fn − F | |(ϕn)x| � 2MK(δ)
∫
{t�δ}∩R

|Fn − F | < ε

2

for n sufficiently large. Hence ∣∣∣∣∫
Q
(u− v) ψ

∣∣∣∣ < ε for all ε > 0

and thus ∫
Q
(u− v)ψ = 0 ,

implying the uniqueness.

Remark 4.2. In the last step of the proof we first choose µ as in Figure 4.3. Then for any ε > 0,
take n >N(µ) and δ < µ so that |I1|< ε/2. For this fixed δ, repeat the estimates with α= 2δ and

µ=δ to obtain

∣∣∣∣∂ϕn

∂x

∣∣∣∣<K(δ) in IR × [δ, T ] for n>N(δ). Finally, choose n sufficiently large so that

|I2|<ε/2.
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5 Existence of the entropy solution

In this section we prove the following theorem.

Theorem 5.1. Suppose u0 ∈ L∞(IR), f ∈C2(IR) and f ′′(s)> 0 for |s| � ‖u0‖L∞(IR) =:M . Then
there exists a weak solution u of (P) with the following properties:

(i) ‖u‖L∞(Q) �‖u0‖L∞(IR);

(ii) Entropy condition: there exists a constant E > 0, depending on M , µ := min
|s|�M

f ′′(s) and

A := max
|s|�M

|f ′(s)| such that for any a>0 and (x, t)∈Q

u(x+ a, t) − u(x, t)
a

� E

t
; (5.1)

(iii) If v0 ∈ L∞(IR) with ‖v0‖L∞(IR) � ‖u0‖L∞(IR) and v ∈ L∞(Q) is the correspondingly con-
structed solution of (P) with initial data v0, then u0 �v0 on IR implies u�v in Q;

(iv) Continuous dependence. Let u and v be as above. Then for every pair x1, x2 ∈ IR and t> 0
we have ∫ x2

x1

|u(x, t) − v(x, t)|dx �
∫ x2+At

x1−At
|u0(x) − v0(x)|dx . (5.2)

Before we start the proof, we point out some consequences of property (iv):

• Uniqueness for correspondingly constructed solutions;

• If u0 has bounded support in IR, then u(·, t) has bounded support in IR for all t> 0. To prove
this we take v0 = v= 0 in (5.2) and consider a situation as in Figure 5.1. By construction we
find that

u(x, t) = 0 for t > 0, x > a2 +At and for t > 0, x < a1 −At .

We prove the theorem by the method of finite differences. In this method we discretize the differential
equation on a grid in the domain Q. Let

h = ∆t and l = ∆x

Version September 15, 2003



48 5 EXISTENCE OF THE ENTROPY SOLUTION

x

t

u(x, t1) = 0

u(x, t2) = 0

a1

u0 = 0
a2 x

(2)
1x

(1)
1

x = a2 + At

u0 = 0

t2

t1

Figure 5.1. Bounded support

(grid parameters). Then define a grid according to

t = kh and x = nl ,

where k∈ZZ+ and n∈ZZ and consider the difference approximation

uk+1
n =

1
2

(
uk

n+1 + uk
n−1

)
− h

2l

{
f
(
uk

n+1

)
− f

(
uk

n−1

)}
(5.3)

for k∈ZZ+ and n∈ZZ, with the initial condition

u0
n := u0(nl)

(
or

1
l

∫ (n+ 1
2
)l

(n− 1
2
)l
u0(s)ds

)
for n ∈ ZZ . (5.4)

The finite difference scheme (5.3) is called the Lax-scheme. Observe that uk
n for n−k even is com-

puted independently of uk
n for n−k odd. The Lax-scheme is not very accurate. For computational

purposes it contains too much numerical dispersion. This one sees using a formal argument with
Taylor expansions. With the notation uj

i =u(il, jh) one finds:

uk+1
n = uk

n + h
∂u

∂t
+ O(h2)

uk
n+1 = uk

n + l
∂u

∂x
+
l2

2
∂2u

∂x2
+
l3

3!
∂3u

∂x3
+ O(l4)

uk
n−1 = uk

n − l
∂u

∂x
+
l2

2
∂2u

∂x2
− l3

3!
∂3u

∂x3
+ O(l4)

fk
n+1 : = f(uk

n+1) = fk
n + l

∂f

∂x
+
l2

2
∂2f

∂x2
+ O(l3)

fk
n−1 : = f(uk

n−1) = fk
n − l

∂f

∂x
+
l2

2
∂2f

∂x2
+ O(l3) .

Substituting these expressions into (5.3) gives

h
∂u

∂t
+ O(h2) =

l2

2
∂2u

∂x2
+ O(l4) − h

2l

{
2l
∂f

∂x
+ O(l3)

}
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or
∂u

∂t
+
∂f

∂x
=

l2

2h
∂2u

∂x2
+ O(l2) + O(h) .

The additional diffusion term is induced by the discretization. It is called numerical dispersion. For
theoretical purposes, however, it is well-suited because it has certain monotonicity and stability prop-
erties, and because it satisfies the entropy condition (5.1). Other difference schemes, having similar
properties, are discussed by CRANDELL & MAJDA [17].

Below we first explain the properties of the Lax-scheme. Later we shall define approximating func-
tions and pass to the limit for l, h→0. Throughout this section we choose the grid parameter l and h
such that

Ah/l � 1 (Stability condition) . (5.5)

Proposition 5.2. (Comparison principle). Suppose uk
n and vk

n are solutions of (5.3), (5.4) with initial
conditions u0

n and v0
n, respectively, and

−M � u0
n � v0

n � M for n ∈ ZZ .

Then

−M � uk
n � vk

n � M for n ∈ ZZ and k ∈ ZZ+ .

Proof. We prove that for any k∈ZZ+

−M � uk
n � vk

n � M ⇒ −M � uk+1
n � vk+1

n � M for all n ∈ ZZ .

Subtracting the difference equations for uk
n and vk

n gives

uk+1
n − vk+1

n =
uk

n+1 − vk
n+1

2
− h

2l

{
f(uk

n+1) − f(vk
n+1)

}
+
uk

n−1 − vk
n−1

2
+
h

2l

{
f(uk

n−1) − f(vk
n−1)

}
(5.6)

=
uk

n+1 − vk
n+1

2

{
1 − h

l
f ′(θk

n+1)
}

+
uk

n−1 − vk
n−1

2

{
1 +

h

l
f ′(θk

n−1)
}
,

where uk
n+1 �θk

n+1 �vk
n+1 and uk

n−1 �θk
n−1 �vk

n−1. By assumption we have −M�θk
n+1, θ

k
n−1 �M

and thus

|f ′(θk
n+1)|, |f ′(θk

n−1)| � A .

We use (5.5) to conclude

uk+1
n � vk+1

n .

A comparison with the constant solutions ±M gives the desired statement. The proof is completed
by induction.
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Proposition 5.3. Suppose −M�u0
n, v

0
n �M for n∈ZZ. If u0−v0 ∈ �1(ZZ), then

uk − vk ∈ �1(ZZ)

and ∞∑
n=−∞

(uk
n − vk

n) =
∞∑

n=−∞
(u0

n − v0
n) for all k ∈ ZZ+ .

Proof. The first assertion is a direct consequence of expression (5.6). To prove the second one we
take an arbitrary N ∈ IN and k∈ZZ+ and compute

N∑
n=−N

(uk+1
n − vk+1

n ) =

1
2

{
(uk

−N−1 − vk
−N−1) + (uk

−N − vk
−N ) + (uk

N − vk
N ) + (uk

N+1 − vk
N+1)

}
+

N−1∑
n=−N+1

(uk
n − vk

n) +

h

2l

{
f(uk

−N−1) − f(vk
−N−1) + f(uk

−N ) − f(vk
−N ) − f(uk

N ) + f(vk
N ) − f(uk

N+1) + f(vk
N+1)

}
.

Letting N → ∞ gives

∞∑
n=−∞

(uk+1
n − vk+1

n ) =
∞∑

n=−∞
(uk

n − vk
n) , (5.7)

from which the result immediately follows.

The following stability result is an application of a lemma of CRANDELL–TARTAR [18].

Proposition 5.4. (Stability 1) Suppose −M�u0
n, v

0
n �M for n∈ZZ. If u0−v0 ∈ �1(ZZ), then

‖uk − vk‖�1(ZZ) � ‖u0 − v0‖�1(ZZ) for all k ∈ ZZ+ .

Proof. We introduce the notation

uk+1 = T (uk) for k ∈ ZZ+ ,

where T :�∞(ZZ)→�∞(ZZ) is defined by the right hand side of (5.3). From Proposition 5.2 it follows
that T is a monotone operator, i.e.

uk � vk ⇒ T (uk) � T (vk) .

For wk :=max{uk, vk} this implies

T (wk) − T (uk) � 0

and
T (wk) − T (vk) � 0 .
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Hence

T (uk) − T (vk) � T (wk) − T (vk) .

Because the right hand side of this inequality is nonnegative we also have

(T (uk) − T (vk))+ � T (wk) − T (vk) , (5.8)

where (·)+ denotes the positive part: i.e. (s)+ =max{0, s}. Now for any a, b∈ IR we have

max{a, b} − b = (a− b)+ � |a− b| .

Hence

0 � wk − vk = (uk − vk)+ � |uk − vk| . (5.9)

Thus if uk−vk ∈ �1(ZZ) then also wk−vk ∈ �1(ZZ) and equality (5.7), applied to wk and vk gives

∞∑
n=−∞

(T (wk
n) − T (vk

n)) =
∞∑

n=−∞
(wk

n − vk
n) =

∞∑
n=−∞

(uk
n − vk

n)+ ,

where we used (5.9). Thus the summation of (5.8) results in

∞∑
n=−∞

(T (uk
n) − T (vk

n))+ �
∞∑

n=−∞
(uk

n − vk
n)+ . (5.10)

Similary one finds

∞∑
n=−∞

(T (vk
n) − T (uk

n))+ �
∞∑

n=−∞
(vk

n − uk
n)+ . (5.11)

Because

|a| = (a)+ + (−a)+ for a ∈ IR ,

it follows from (5.10) and (5.11) that

‖T (vk) − T (uk)‖�1(ZZ) � ‖vk − uk‖�1(ZZ) .

The proof is completed by induction.

Next we give a second stability result, which is the discrete version of inequality (5.2).

Proposition 5.5. (Stability 2) Suppose −M�u0
n, v

0
n �M for n∈ZZ . Then for any N ∈ IN∑

|n|�N

|uk
n − vk

n| �
∑

|n|�N+k

|u0
n − v0

n|

holds for all k∈ZZ+.
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Proof. For k∈ZZ+ and n∈ZZ set wk
n :=uk

n−vk
n. Again we use expression (5.6) to obtain

wk+1
n =

{
1
2
− h

2l
f ′(θk

n+1)
}
wk

n+1 +
{

1
2

+
h

2l
f ′(θk

n−1)
}
wk

n−1 ,

where the coefficients of wk
n+1 and wk

n−1 are positive. Hence for any N ∈ IN and k∈ZZ+ we have

∑
|n|�N

∣∣∣wk+1
n

∣∣∣ �
∑

|n|�N

{
1
2
− h

2l
f ′(θk

n+1)
} ∣∣∣wk

n+1

∣∣∣ +
∑

|n|�N

{
1
2

+
h

2l
f ′(θk

n−1)
} ∣∣∣wk

n−1

∣∣∣
=

N+1∑
m=−N+1

{
1
2
− h

2l
f ′(θk

m)
} ∣∣∣wk

m

∣∣∣ +
N−1∑

m=−N−1

{
1
2

+
h

2l
f ′(θk

m)
} ∣∣∣wk

m

∣∣∣
�

∑
|m|�N+1

{
1
2
− h

2l
f ′(θk

m)
} ∣∣∣wk

m

∣∣∣ +
∑

|m|�N+1

{
1
2

+
h

2l
f ′(θk

m)
} ∣∣∣wk

m

∣∣∣
=

∑
|n|�N+1

|wk
n| . (5.12)

We proceed by induction. Inequality (5.12) shows that the statement of the proposition is true for
k=1. Now suppose for arbitrary k∈ IN that∑

|n|�N

∣∣∣wk
n

∣∣∣ �
∑

|n|�N+k

∣∣w0
n

∣∣ .
Then with (5.12) we obtain∑

|n|�N

∣∣∣wk+1
n

∣∣∣ �
∑

|n|�N+1

∣∣∣wk
n

∣∣∣ � . . . �
∑

|n|�N+k+1

∣∣w0
n

∣∣ ,
which proves the result.

In the following propositions we assume that u0 ∈ �∞(ZZ) such that −M�u0
n �M for all n∈ZZ and

that uk
n is the solution of the difference equation (5.3).

Proposition 5.6. (Entropy condition) Let c=min
{µ

2 ,
A

4M

}
. Then for all n∈ZZ and k∈ IN

uk
n − uk

n−2

2l
� E

kh
with E =

1
c
.

Proof. Let zk
n :=(uk

n−uk
n−2)/2l for n∈ZZ and k∈ZZ+. Using the difference equation we find

zk+1
n =

1
2
(
zk
n+1 + zk

n−1

)− h

4l2
{(
f(uk

n+1) − f(uk
n−1)

)
−

(
f(uk

n−1) − f(uk
n−3)

)}
.

Next we expand

f(uk
n+1) = f(uk

n−1) + f ′(uk
n−1)2lz

k
n+1 + f ′′(θk

n)2l2(zk
n+1)

2

and

f(uk
n−3) = f(uk

n−1) − f ′(uk
n−1)2lz

k
n−1 + f ′′(θk

n−2)2l
2(zk

n−1)
2 .

Version September 15, 2003



53

Substitution gives

zk+1
n =

{
1
2
− h

2l
f ′(uk

n−1)
}
zk
n+1 +

{
1
2

+
h

2l
f ′(uk

n−1)
}
zk
n−1

− h

2

{
f ′′(θk

n)(zk
n+1)

2 + f ′′(θk
n−2)(z

k
n−1)

2
}
,

which implies

zk+1
n �

{
1
2
− h

2l
f ′(uk

n−1)
}
zk
n+1 +

{
1
2

+
h

2l
f ′(uk

n−1)
}
zk
n−1

− hc
{

(zk
n+1)

2 + (zk
n−1)

2
}
. (5.13)

Now introduce for k∈ZZ+ and n∈ZZ

z̃k
n = max

{
zk
n+1, z

k
n−1, 0

}
� 0 .

Using this in (5.13) gives

zk+1
n �

{
1
2
− h

2l
f ′(uk

n−1)
}
z̃k
n +

{
1
2

+
h

2l
f ′(uk

n−1)
}
z̃k
n − hc(z̃k

n)2

or

zk+1
n � z̃k

n − hc(z̃k
n)2 . (5.14)

Next we estimate

zk
n �

∣∣∣zk
n

∣∣∣ =

∣∣∣∣∣uk
n − uk

n−2

2l

∣∣∣∣∣ � M

l
� M

Ah
� M

4Mch
=

1
4ch

,

where we used
hA

l
�1 and

A

4M
�c. Then, introducing

Mk := sup
n∈ZZ

{
z̃k
n

}
(k ∈ ZZ+) ,

we obtain

z̃k
n � Mk � 1

4ch
<

1
2ch

. (5.15)

Because the function
φ(y) = y − chy2 , y � 0

is strictly increasing for 0<y<1/(2ch), we find from (5.14) and (5.15)

zk+1
n � φ(z̃k

n) � φ(Mk) for all n ∈ ZZ .

Consequently
Mk+1 � φ(Mk)
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and
Mk+1 −Mk

h
� −c(Mk)2 for all k ∈ ZZ+ .

From this inequality we see

M0 = 0 ⇒ Mk = 0 for all k ∈ IN

⇒ zk
n � 0 for all n ∈ ZZ and k ∈ IN .

Hence if M0 =0 (this occurs for example if u0 is non-increasing), the proposition is true. If M0>0,
we compare the solution Mk of the difference inequality with the solution of the differential equation⎧⎪⎨⎪⎩

dw
dt

= −cw2 for t > 0 ,

w(0) = M0 .

The solution is given by

w(t) =
1

ct+ 1
M0

for t � 0 .

We prove below that
Mk � w(kh) for all k ∈ ZZ+ . (∗)

Inequality (∗) implies

Mk � 1
ckh+ 1

M0

<
1
ckh

=
E

kh
,

which gives
uk

n − uk
n−2

2l
= zk

n � z̃k
n � Mk <

E

hk
,

and concludes the proof of the proposition.

Proof of inequality (∗). We show that

Mk � w(kh) ⇒Mk+1 � w((k + 1)h) .

From (5.15) it follows that M0 � 1
4ch and thus

w(kh) =
1

ckh+ 1
M0

� 1
ckh+ 4ch

<
1

2ch
.

Since φ is strictly increasing on [0, 1
2ch ] we obtain

φ(Mk) � φ (w(kh)) ,

which implies

Mk+1 � φ (w(kh)) = w(kh) − ch (w(kh))2 = w(kh) + hw′(kh) � w ((k + 1)h) ,

where we used the convexity of the function w.
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As in the continuous case, the entropy inequality implies a bound, local in time, on the variation in
space. Before we give the proposition, we write

S1 ∪ S2 =
{
(n, k)|n ∈ ZZ and k ∈ ZZ+

}
,

with

S1 = {(n, k)|n − k even}
and

S2 = {(n, k)|n − k odd} .

Since the uk
n with (n, k)∈S1 are computed independently from the uk

n with (n, k)∈S2, we expect a
result either for (n, k)∈S1 or for (n, k)∈S2. This corresponds also to the entropy condition which
relates uk

n and uk
n−2.

Proposition 5.7. (Space estimate) Let α,L>0. Choose k∈ IN such that kh>α. Then there exists a
constant C=C(L,α,M) such that ∑

|n|�L
l

|uk
n+2 − uk

n| � C .

Proof. Let k∈ IN with kh>α and let

vk
n := uk

n − c1nl for all n ∈ ZZ

with c1>
E

α
. Then

vk
n+2 − vk

n < 0 for all n ∈ ZZ .

Hence∑
|n|�L

l

∣∣∣uk
n+2 − uk

n

∣∣∣ �
∑

|n|�L
l

∣∣∣vk
n+2 − vk

n

∣∣∣ +
∑
|n|�L

l

2c1l

=
∑

|n|�L
l

(
vk
n − vk

n+2

)
+ 2

∑
|n|�L

l

c1l =
∑

|n|�L
l

(
uk

n − uk
n+2

)
+ 4

∑
|n|�L

l

c1l

� 4M + 10c1L =: C ,

where we used L�2l.

Next we present a time estimate. With uk ∈ �1loc(ZZ), we show that the corresponding norm is locally
Lipschitz continuous in k.

Definition 5.8. Let f : IR × IR+ → IR be such that f(·, t)∈L1
loc (IR) for all t > 0. Then f is called

locally L1
loc-Lipschitz continuous if for every compact setB⊂ IR and for every positive number t∗>0,

there exists a constant K=K(B, t∗) such that

‖f(·, t1) − f(·, t2)‖L1(B) � K|t1 − t2|

for all t1, t2 � t∗.
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56 5 EXISTENCE OF THE ENTROPY SOLUTION

Proposition 5.9. (Time estimate) Choose α,L > 0 and let δ := h/l. Further let k, p ∈ IN such that
k>p and ph>α. Then there exists a constant C∗=C∗(α,L,M, δ) such that for k−p even∑

|n| � L/l

∣∣∣uk
n − up

n

∣∣∣ l � C∗ (k − p)h .

Similarly we find ∑
|n| � L/l

∣∣∣uk
n − up

n+1

∣∣∣ l � C∗ (k − p)h

for k−p odd.

Proof. We prove here only the case k−p even. We apply a Taylor expansion in the finite difference
equation (5.3). This gives

uk+1
n =

{
1
2

+ f ′
(
θk
n

) h

2l

}
uk

n−1 +
{

1
2
− f ′

(
θk
n

) h

2l

}
uk

n+1 ,

which we write as
uk+1

n = auk
n−1 + buk

n+1 (a+ b = 1, a, b � 0) .

This we repeat and obtain

uk+1
n = Auk−1

n−2 +Buk−1
n + Cuk−1

n+2 (A+B + C = 1, A,B,C � 0) .

Hence
uk+1

n − uk−1
n = A

(
uk−1

n−2 − uk−1
n

)
+C

(
uk−1

n+2 − uk−1
n

)
or ∣∣∣uk+1

n − uk−1
n

∣∣∣ �
∣∣∣uk−1

n−2 − uk−1
n

∣∣∣ +
∣∣∣uk−1

n+2 − uk−1
n

∣∣∣ .
We apply Proposition 5.7 and obtain∑

|n|�L/l

∣∣∣uk+1
n − uk−1

n

∣∣∣ l � Cl as long as (k − 1)h > α .

Because k−p is even we have

uk
n − up

n =
k−2∑
i=p

(i−p even)

(
ui+2

n − ui
n

)
.

Hence ∣∣∣uk
n − up

n

∣∣∣ �
k−2∑
i=p

(i−p even)

∣∣ui+2
n − ui

n

∣∣ ,
and consequently

∑
|n|�L/l

∣∣∣uk
n − up

n

∣∣∣ l �
k−2∑
i=p

(i−p even)

{ ∑
|n| �L

l

∣∣ui+2
n − ui

n

∣∣ l} �
k−2∑
i=p

(i−p even)

Cl =
k − p

2
Cl =

C

2δ
(k − p)h ,

which gives the desired inequality with C∗ :=C/2δ.
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Remark 5.10. The results of Propositions 5.7 and 5.9 also hold if we sum over points n such that
(n, k)∈Si (i.e. n−k even (i=1) and n−k odd (i=2)): one has with similar constants∑

|n|�L/l, (n,k)∈Si

∣∣∣uk
n+2 − uk

n

∣∣∣ � C , (5.16)

and ∑
|n|�L/l, (n,k)∈S1

∣∣∣uk
n − up

n

∣∣∣ 2l � C∗ (k − p)h (5.17a)

for k−p even, or ∑
|n|�L/l, (n,k)∈S2

∣∣∣uk
n − up

n+1

∣∣∣ 2l � C∗ (k − p)h (5.17b)

for k−p odd.

Next we prove convergence towards a weak solution of (P). Let h, l>0 be such that

h

l
= δ

is fixed and
Ah

l
� 1 (stability condition).

We consider the family of functions {Uh,l}h,l>0 with Uh,l :Q→ IR defined by

Uh,l(x, t) = uk
n for nl � x < (n+ 2)l and kh � t < (k + 1)h ,

where (n, k)∈S1 (see Figure 5.2). From the comparison principle (Proposition 5.2) we obtain

‖Uh,l‖L∞(Q) � M uniformly in h, l > 0 .
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Figure 5.2. Construction of Un,l
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58 5 EXISTENCE OF THE ENTROPY SOLUTION

Now fix t0>0. Then for each n∈ IN we have for the approximation and its x-variation the estimates

‖Uh,l(·, t0)‖L∞([−n,n]) � M

and
V−n,nUh,l(·, t0) � C(n, t0,M) ,

which hold uniformly in l > 0 and 0 < h < t0. The second inequality is a direct consequence of
Proposition 5.7, see also Remark 5.10.

In order to pass to the limit for h, l→0 we need the following result.

Lemma 5.11. (Helly’s theorem) Suppose there exist positive constants M,C and a family of functions
F ={f : [a, b]→ IR}, with [a, b]⊂ IR fixed, such that

(i) ‖f‖L∞(a,b) �M,

(ii) Va,b f�C,
for all f ∈ F . Then given any sequence {fn} ⊂ F , there exists a subsequence {fni} and a function
ϕ∈F such that for each x∈ [a, b]

fni (x) → ϕ (x) as ni → ∞ ;

i.e. pointwise convergence along a subsequence.

Proof. See TAYLOR [70].

Since l=h/δ, it is convenient to introduce the notation

Uh (x, t) := Uh,h/δ (x, t) .

We apply Lemma 5.11 to the family {Uh (·, t0)}0<h<t0
. For instance, taking fn := U t0

n+1
(·, t0), we

obtain a subsequence which converges for each x ∈ [−n, n]. Let us denote this subsequence by
{Uhi

(·, t0)}, where hi→0 as i→∞.

Next we consider subsequences of the subsequence to extend the domain of convergence. First we
apply a standard diagonal process to extract a subsequence which converges pointwise on IR. Next we
fix T >0 and select a countable dense subset E⊂ (0, T ). Again we apply the diagonal process to ob-
tain a subsequence which converge pointwise on IR×E. As a result we have constructed a sequence,
denoted again by {Uhi

}, such that Uhi
(x, t) converges for each (x, t)∈ IR×E as i→∞ (with hi→0).

We first show

Proposition 5.12. Let X > 0. Then for any t ∈ (0, T ] the sequence {Ui := Uhi
}∞i=1 is a Cauchy

sequence in L1 ([−X,X]).

Proof. Let t∈(0, T ]. Then there exists a sequence {tm}⊂E such that tm↑t as m→∞. Introduce

Iij (t) : =
∫
|x|<X

|Ui(x, t) − Uj(x, t)| dx

�
∫
|x|<X

|Ui(x, t) − Ui(x, tm)|dx+
∫
|x|<X

|Ui(x, tm) − Uj(x, tm)|dx +∫
|x|<X

|Uj(x, t) − Uj(x, tm)|dx

=: I1 + I2 + I3 .
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It follows directly from the Lebesgue dominated convergence theorem that the middle term I2 → 0
as i, j → ∞. For s ∈ IR, we denote by [s] the largest integer � s. Since Ui(x, t) is constant for
khi � t<(k + 1)hi or k� t

hi
<k + 1, we have

Ui (x, t) = Ui

(
x,

[ t
hi

]
hi

)
.

We use this notation in I1 (and in I3):

I1 =
∫
|x|<X

∣∣∣∣Ui(x,
[ t
hi

]
hi) − Ui(x,

[ tm
hi

]
hi)

∣∣∣∣ dx .
If [ t

hi
]−[ tmhi

] is even, then the integrant in I1 is constant on intervals of length 2li. We find

I1 �
∑

|n|�X
li

,
(
n,[ t

hi
]
)
∈S1

∣∣∣∣u[ t
hi

]

n − u
[ tm

hi
]

n

∣∣∣∣ 2li � C∗
([ t

hi

]
−

[ tm
hi

])
hi .

Using s−1� [s]�s gives
[s1] − [s2] � s1 − s2 + 1 .

Hence
I1 � C∗ (t− tm + hi) .

If [ t
hi

]−[ tmhi
] is odd, then the integrant in I1 is only constant on intervals of length li. Correcting for

the differences gives

I1 �
∑

|n|�X
li

,
(
n,[ t

hi
]
)
∈S1

∣∣∣∣u[ t
hi

]

n − u
[ tm

hi
]

n+1

∣∣∣∣ 2li +
∑

|n|�X
li

,
(
n,[ t

hi
]
)
∈S1

∣∣∣∣u[ t
hi

]

n − u
[ t
hi

]

n+2

∣∣∣∣ li
� C∗

([ t
hi

]
−

[ tm
hi

])
hi + Cli � C∗ (t− tm) + C∗hi +

C

δ
hi .

Similar expressions are obtained for I3. Thus we have

I1 + I3 � 2C∗ (t− tm) +
(
C∗ +

C

δ

)
(hi + hj) .

Now for any ε>0, we first choose m such that

2C∗ (t− tm) <
ε

2
,

which shows that
Iij (t) < ε for i, j sufficiently large.

This completes the proof of the proposition.

Next we show

Proposition 5.13. The sequence {Ui}∞i=1 is a Cauchy sequence in the space L1 ([−X,X] × [0, T ]).
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60 5 EXISTENCE OF THE ENTROPY SOLUTION

Proof. We show that for any ε>0 ∫ T

0
Iij (t) dt < ε

provided i, j are sufficiently large. We first show that

Iij (t) → 0 as i, j → ∞, uniformly on compacta of (0, T ]

i.e. on intervals of the form 0< τ � t� T. Let τ ∈ (0, T ). Then for any ε> 0 choose a finite subset
F ⊂E such that if t∈ [τ, T ] there exists tm<t, tm∈F , satisfying

2C∗ (t− tm) <
ε

2
.

Then for i, j sufficiently large we have

I2(tm) +
(
C∗ +

C

δ

)
(hi + hj) <

ε

2
for all tm ∈ F ,

which implies that
Iij (t) < ε for all τ � t � T .

Next we write ∫ T

0

∫
|x|<X

|Ui(x, t) − Uj(x, t)|dxdt =

∫ τ

0

∫
|x|<X

|Ui(x, t) − Uj(x, t)|dxdt+
∫ T

τ

∫
|x|<X

|Ui(x, t) − Uj(x, t)|dxdt .

Then given any ε>0, first choose τ small such that 8τXM <ε. This implies that the first integral on
the right is less than ε/2. Next choose i, j large so that the second integral is less than ε/2 as well.
This completes the proof.

Since Propositions 5.12 and 5.13 hold for arbitrary X,T > 0, we use again a diagonal process and
obtain a sequence {Ui}∞i=1, with hi →0 as i→∞, and a measurable function u∈L1

loc(Q) so that for
i→∞

(i) Ui→u in L1
loc(Q);

(ii) Ui(·, t)→u(·, t) in L1
loc(IR) for all t>0;

(iii) Ui(x, t)→u(x, t) a.e. in Q.

We immediately have

u ∈ L∞ (Q) with ‖u‖L∞(Q) � M = ‖u0‖L∞(IR) .

The remaining part of the proof, that is to show that u is indeed a weak solution which satisfies
Theorem 5.1, is quite technical and will be discussed here only in general terms. Details can be found
in OLEINIK [56] and SMOLLER [67].

The key idea is to write the difference scheme (5.3) in the form

uk+1
n − uk

n

h
− uk

n+1 − 2uk
n + uk

n−1

2l2
l2

2h
+
f(uk

n+1) − f(uk
n−1)

2l
= 0 .
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We multiply this expression by the value of the test function at (x, t)=(nl, kh). With ϕk
n =ϕ(nl, kh),

there results

ϕk+1
n uk+1

n − ϕk
nu

k
n

h
− uk+1

n

ϕk+1
n − ϕk

n

h
+
l2

2h
2ϕk

n − ϕk
n+1 − ϕk

n−1

l2
uk

n

+
ϕk

n+1u
k
n − ϕk

nu
k
n−1

2h
+
ϕk

n−1u
k
n − ϕk

nu
k
n+1

2h
+
ϕk

n+1f(uk
n+1) − ϕk

n−1f(uk
n−1)

2l

− f(uk
n+1)

ϕk
n+1 − ϕk

n

2l
− f(uk

n−1)
ϕk

n − ϕk
n−1

2l
= 0 . (5.18)

Since ϕ(x, t) = 0 for large |x| and t, we similarly have ϕk
n = 0 for large |n| and k. This allows us to

sum (5.18) over all n∈ZZ and k ∈ZZ+. The resulting expression misses the first (except for k= 0),
fourth, fifth and sixth terms because these contributions cancel. After multiplying by hl, one finds

− l
∑
n

u0
nϕ

0
n + hl

{∑
k,n

(
−uk+1

n

ϕk+1
n − ϕk

n

h
− l2

2h
ϕk

n+1 − 2ϕk
n + ϕk

n−1

l2
uk

n

)

−
∑
k,n

f(uk
n+1)

ϕk
n+1 − ϕk

n

2l
−

∑
k,n

f(uk
n−1)

ϕk
n − ϕk

n−1

2l

}
= 0 . (5.19)

In the definition of the piecewise constant approximations Uh,l(x, t) we used points (n, k)∈S1 (n−k
even). However, in expression (5.19) we sum over all points (n, k). To use Uh,l in (5.19) we take

u0
n =

{
u0(nl) n even ,

u0

(
(n− 1)l

)
n odd .

This implies

uk
n = uk

n−1 for (n, k) ∈ S2

and

Uh,l(x, t) = uk
n for nl � x < (n+ 1)l, kh � t < (k + 1)h ,

now for all (n, k). Using Uh,l in (5.19) and replacing the summations by integrations we obtain

−
∫

t=0
Uh,lϕ+ δ1 −

∫∫
t�0

Uh,lϕt + δ2 − l2

2h

∫∫
t�0

Uh,lϕxx + δ3 −
∫∫

t�0
f(Uh,l)ϕx + δ4 = 0 ,

where δi→0 as h, l→0. Replacing Uh,l by Ui (see Propositions 5.12 and 5.13) we get∫∫
t�0

(
Uiϕt + f(Ui)ϕx

)
+

l2i
2hi

∫∫
t�0

Uiϕxx +
∫

t=0
Uiϕ = δ(hi, li) (5.20)

where δ(hi, li) → 0 as i → ∞. Note that again
l2i
2hi

appears as numerical dispersion. Using the

convergence properties of the sequence {Ui} and
l2i
2hi

=
1

2δ2
hi→0 as i→∞, we obtain∫∫

t�0

(
uϕt + f(u)ϕx

)
+

∫
t=0

u0ϕ = 0 .

Version September 15, 2003



62 5 EXISTENCE OF THE ENTROPY SOLUTION

Similarly one shows that Proposition 5.6 implies∫
t�0

(
uϕx +

E

t
ϕ
)

� 0

for all ϕ∈C∞
0 (Q), ϕ�0. This is the weak form of entropy inequality (5.1).
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6 The non-convex case

We now drop the convexity condition on f and consider the initial value problem

(P)

{
ut + (f(u))x = 0 in Q

u(·, 0) = u0(·) on IR ,
(6.1)

where f : IR→ IR is smooth (e.g. f ∈C2(IR)), with a finite number of inflection points. Such prob-
lems occur in petroleum engineering. The Buckley–Leverett equation without gravity has a monotone
convex-concave flux with one inflection point only. Including gravity may result in a non-monotone
flux with two inflection points. This is discussed in Chapter 12 and in exercise 8, see Chapter 14.

We shall derive a general entropy condition to distinguish between admissible and non-admissible
shocks. Before we proceed we recall that for convex f and piecewise smooth solutions, admissible
shocks are those for which

ul > ur . (6.2)

Here ul and ur denote the left and right limit at the shock.

6.1 Travelling waves

We give an argument in terms of travelling waves to capture the viscous profile at shocks. Consider a
travelling wave solution of the equation

ut + (f(u))x = νuxx in Q

where ν>0, which satisfies

u(−∞, t) = ul, u(+∞, t) = ur for all t > 0 .

Setting

u(x, t) = v(η) with η =
x− ct

ν
,

we obtain the boundary value problem

− cv′ + (f(v))′ = v′′ on IR ,

v(−∞) = ul , v(+∞) = ur . (6.3)
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64 6 THE NON-CONVEX CASE

The differential equation can be integrated to yield

−cv + f(v) = v′ +A .

Using v′(±∞)=0 (verify!) we obtain

−cul + f(ul) = A and − cur + f(ur) = A .

This gives for the travelling wave speed

c =
f(ur) − f(ul)

ur − ul
.

Observe that this expression does not depend on ν and coincides with the shockspeed as given by the
Rankine-Hugoniot condition (2.2). What remains is the first order equation

v′ = f(v) − f(ul) − c(v − ul) . (6.4)

Now suppose there exists a v̂ between ul and ur such that

f(v̂) − f(ul) − c(v̂ − ul) = 0 .

Then by a uniqueness argument a solution cannot satisfy both boundary conditions in (6.3). Hence a
travelling wave is strictly monotone and

• ul > ur ⇒ v′ < 0 ⇒ v < ul,

• ul < ur ⇒ v′ > 0 ⇒ v > ul.

In both cases equation (6.4) implies

f(v) − f(ul)
v − ul

> c =
f(ur) − f(ul)

ur − ul
(6.5)

for all v between ul and ur.

Condition (6.5) is a necessary and sufficient condition for the existence of a travelling wave. The
above argument shows that it is necessary. To prove that (6.5) is also sufficient we use (6.5) in (6.4)
and integrate

v′

f(v) − f(ul) − c(v − ul)
= 1 ,

to obtain ∫ v(η)

1
2
(ul+ur)

ds
f(s) − f(ul) − c(s− ul)

= η .

This defines a unique travelling wave v=v(η) which satisfies v(0)= 1
2(ul+ur).
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Figure 6.1. The function f

Suppose f is convex-concave as in Figure 6.1. What are possible travelling waves?

• ul>ur =0: f(v)<f(ul)−(ul−v)f(ul)−f(ur)
ul−ur

. A travelling wave exists up to 0=ur<ul �
u1.

• ul<ur =1: f(v)>f(ul)+(v−ul)
f(ul)−f(ur)

ul−ur
. A travelling wave exists up to u0 �ul<ur =

1.

The numbers u0 and u1 are defined in Figure 6.1. Since (6.5) holds for any ν>0, it can be considered
as an additional entropy condition for the corresponding hyperbolic equation. Thus we have:

Entropy condition for piecewise smooth solutions:

(E)
f(u) − f(ul)

u− ul
� f(ur) − f(ul)

ur − ul

for all u between ul and ur.

Condition (E) ensures the existence of travelling waves (ν > 0) connecting the levels ul as η =
x−ct
ν

→−∞ and ur as η=
x−ct
ν

→+∞.

Next we give a result of QUINN [61], which implies that piecewise smooth solutions of (P), which
satisfy condition (E) are unique.

Theorem 6.1. Suppose u and v are piecewise smooth solutions of equation (6.1) in Q, with initial
data u0 and v0 which are piecewise smooth such that u0−v0 ∈L1(IR). If u and v satisfy condition
(E) then

‖u(·, t) − v(·, t)‖L1(IR) � ‖u0 − v0‖L1(IR)

for all t�0.
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6.2 Construction of solutions

Let f ∈C2([0, 1]) be convex-concave such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f(0) = 0
f(1) = 1
f ′(s) > 0 for 0 < s < 1
f ′′(s) > 0 for 0 < s < s̃

f ′′(s) < 0 for s̃ < s < 1 ,

for some s̃∈(0, 1). Consider the Riemann problems

(I)

⎧⎪⎪⎨⎪⎪⎩
ut + (f(u))x = 0 in Q ,

u(x, 0) =

{
1 x < 0
0 x > 0

and (II)

⎧⎪⎪⎨⎪⎪⎩
ut + (f(u))x = 0 in Q ,

u(x, 0) =

{
0 x < 0
1 x > 0 .

We construct solutions as combinations of shocks, satisfying (E), and rarefaction waves. They are the
unique entropy solutions.
Problem I. Consider the point sm where

f(sm) − f(0)
sm − 0

=
f(sm)
sm

= f ′(sm) .

Note that at sm the shock speed and the rarefaction speed coincide. The solution consists of a con-
stant state (= 1) (if f ′(1)> 0), followed by a rarefaction connecting 1 and sm, followed by a shock
connecting sm and 0, see Figure 6.2.
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u

f ′(1)tsmsl
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f ′(sm)t

Figure 6.2. Solution of Problem I for t > 0

Across the shock the entropy condition is satisfied. Other choices for sm lead to a contradiction:

• f ′(s1m)<
f(s1m)
s1m

gives a solution that violates (E), see Figure 6.3a;
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• f ′(s2m)>
f(s2m)
s2m

gives a multivalued solution, see Figure 6.3b.
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Figure 6.3. Consequence of other sm

Problem II. Consider the point sl when

f(1) − f(sl)
1 − sl

=
1 − f(sl)

1 − sl
= f ′(sl) .

Then the solution has a constant state (=0) (if f ′(0)>0), followed by a rarefaction connecting 0 and
sl, followed by a shock connecting sl and 1.

6.3 Weak entropy solutions

Following KRUZKOV [43] we generalize the definition of a weak entropy solution.

Definition 6.2. A function u∈L∞(Q) is called a weak entropy solution of (P) if

(i) for all k∈ IR ∫
Q

{|u− k|ϕt + sign (u− k) (f(u) − f(k))ϕx

}
dxdt � 0 ,

for all ϕ∈C∞
0 (Q) with ϕ�0;

(ii) there exists a set Σ⊂(0,∞) with meas(Σ)=0, such that if t∈(0,∞)\Σ the function u(x, t)
is defined almost everywhere in IR and is such that for any L>0

lim
t↓0

t∈(0,∞)\Σ

∫ L

−L
|u(x, t) − u0(x)|dx = 0 .
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68 6 THE NON-CONVEX CASE

Note: since ϕ∈C∞
0 (Q), the initial condition does not enter the weak form of the equation. Statement

(ii) is needed to relate a solution to its given value at t= 0. It means that ||u(t)−u0||L1
loc(IR) → 0 as

t↓0, with t∈(0,∞) \ Σ.

Kruzkov establishes existence (via the viscosity method) and uniqueness of weak entropy solutions.
Later CRANDALL & MAJDA [17] presented an existence proof using monotone difference schemes
(Lax, Godunov).

Below we show that Kruzkov’s formulation unifies all previous properties for piecewise smooth solu-
tions. Let

q =
(
sign(u− k) (f(u) − f(k)) , |u− k|) .

Then we have ∫
Q

q · gradϕ � 0

for all ϕ∈C∞
0 (Q) with ϕ�0 and for all k∈ IR. For u∈L∞(Q) we take k>supu and obtain∫

Q
(k − u)ϕt + (f(k) − f(u))ϕx � 0 .

Hence ∫
Q
uϕt + f(u)ϕx � 0

for all ϕ∈C∞
0 (Q) with ϕ�0. Similarly we get for k< inf u∫

Q
uϕt + f(u)ϕx � 0 .

Thus ∫
Q
uϕt + f(u)ϕx = 0 for all ϕ ∈ C∞

0 (Q) with ϕ � 0 ,

implying that ∫
Q
uϕt + f(u)ϕx = 0 for all ϕ ∈ C∞

0 (Q) .

Thus a solution according to Kruzkov’s definition is also a weak solution in the original sense. Then
we know that (see the results of Chapter 2):

• If u is smooth, it is a classical solution of the equation;

• Across shocks (assuming the solution to be piecewise smooth) the Rankine–Hugoniot condition
holds.

Next consider Figure 6.4 in which u is C1 to the left and right of the shock curve and continuous up
to P (from both sides). Let ul<ur. Then, given any k ∈ (ul, ur), there exists a disk Dk, centered at
P , such that

k > u in Dl
k and k < u in Dr

k .

This implies for
q = (f(k) − f(u), k − u)
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PDl
k

Dr
k

Figure 6.4.

that divq=0 in Dl
k and for

q = (f(u) − f(k), u− k)

that divq=0 in Dr
k. In Dk we also have∫

Dk

q · gradϕ � 0 for all ϕ ∈ C∞
0 (Dk) with ϕ � 0 .

Combining these statements gives∫
Dk ∩ shock curve

(qr − ql) · nϕ � 0 for all ϕ ∈ C∞
0 (Dk) with ϕ � 0 ,

and in particular
(qr − ql) · n � 0 at P for all k ∈ (ul, ur) .

We show that this inequality is equivalent to Oleinik’s shock condition. It follows immediately that

tan α (qr − ql)t � (qr − ql)x for all k ∈ (ul, ur)

and written out

f(ur) − f(ul)
ur − ul

{ur + ul − 2k} � {f(ur) + f(ul) − 2f(k)} .

This yields
f(ur) − f(k)

ur − k
� f(ur) − f(ul)

ur − ul
for all k ∈ (ul, ur) ,

which is condition (E).

Below we present a brief motivation concerning Definition 6.2. Kruzkov applied the vanishing vis-
cosity method to establish existence of weak solutions of (P). For ν>0 he considered the problem{

ut + (f(u))x = νuxx in Q ,

u(x, 0) = u0(x) on IR ,

and he used a compactness argument in L1
loc(Q) to obtain convergence as ν→0.
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Why the special form in Definition 6.2? Let ψ : IR → IR be a smooth convex function and let ϕ ∈
C∞

0 (Q), ϕ�0. First multiply the viscosity equation by ψ′(u):

ψ′(u)ut − νψ′(u)uxx + ψ′(u)f ′(u)ux = 0 .

Using
(ψ(u))xx = ψ′(u)uxx + ψ′′(u)u2

x

we write

ψ(u)t − ν(ψ(u))xx +
∂

∂x

∫ u

k
ψ′(s)f ′(s)ds = −νψ′′(u)u2

x � 0 .

Multiplying by ϕ and integrating over Q gives∫
Q

{
ψ(u){ϕt + νϕxx} +

(∫ u

k
ψ′(s)f ′(s)ds

)
ϕx

}
dxdt � 0 .

In this inequality we may replace the smooth ψ(u) by |u−k|. Then we send ν ↓0 and obtain (i).

Version September 15, 2003



71

Part II

Systems
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7 Examples

In this chapter we consider a number of different models from physics and engineering. In their
mathematical formulation, these models are given in terms of coupled first order partial differential
equations. We learn how to construct these equations and we find out what questions to pose when
solving them. The derivations will be quite concise. References are given in each example.

7.1 Motion of ideal (perfect) fluid

Consider the one-dimensional flow of an ideal or perfect fluid. Such a fluid has no internal friction
(zero viscosity) and no heat exchange between different parts of the fluid (and the outside world) takes
place. Below we present the corresponding transport equations. For an extensive treatment we refer
to LANDAU & LIFSCHITZ [44] and VON MISES & FRIEDRICHS [54].

The equation of continuity, or the mass balance equation, is given by

∂ρ

∂t
+

∂

∂x
(ρv) = 0 , (7.1)

where ρ= ρ(x, t) and v= v(x, t) denote the density and velocity of the fluid, respectively, at a given
point x in space and at a given time t.

The equation of motion of a volume element in the fluid results from Newton’s second law of dynamics

ρ
Dv

Dt
+
∂p

∂x
= 0 , (7.2)

in which p denotes the fluid pressure and
Dv

Dt
the rate of change of the velocity of a given fluid particle

as it travels through space. Using in (7.2) the definition

D

Dt
=

∂

∂t
+ v

∂

∂x
(7.3)

gives

∂v

∂t
+ v

∂v

∂x
+

1
ρ

∂p

∂x
= 0 . (7.4)
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The operator (7.3) is the material derivative and (7.4) is known as Euler’s equation. Combining (7.4)
and (7.1) gives

∂ρv

∂t
+

∂

∂x
(ρv2 + p) = 0 .

The absence of heat exchange between different fluid particles means that the flow of an ideal fluid is
adiabatic. This implies that for any given fluid particle the entropy S remains constant as the particle
moves through space. Hence

DS

Dt
= 0 (adiabatic flow)

or

∂S

∂t
+ v

∂S

∂x
= 0 .

Combining this equation with (7.1), results in the continuity equation for the entropy

∂ρS

∂t
+

∂

∂x
(ρvS) = 0 ,

where ρvS denotes the entropy density flux.

Hence the space-time behaviour of the state (ρ, v and S or ρ, v and p) of an ideal fluid in a one-
dimensional setting is described by the three coupled differential equations

∂ρ

∂t
+

∂

∂x
(ρv) = 0 ,

∂ρv

∂t
+

∂

∂x
(ρv2 + p) = 0 ,

∂ρS

∂t
+

∂

∂x
(ρvS) = 0 .

To solve this system one needs an additional algebraic relation bewteen ρ, p and S. For example in
the case of an ideal gas it can be shown that

S = cv log(p/ργ) + constant , (7.5)

where γ=cp/cv>1 and cp and cv are the specific heat at constant pressure and volume, respectively:
see FEYNMAN [24] for a clear discussion on this subject and also LEVEQUE [47]. Instead of (7.5) one
often writes

p = κ exp {S/cv} ργ . (7.6)

When the entropy remains constant throughout the fluid and during its motion, we call the flow isen-
tropic. Hence the equations for isentropic gas flow are given by⎧⎪⎪⎨⎪⎪⎩

∂ρ

∂t
+

∂

∂x
(ρv) = 0 ,

∂ρv

∂t
+

∂

∂x
(ρv2 + κργ) = 0 ,

(7.7)

for the unknowns ρ and v. For γ = 1, these equations describe isothermal flow. Thus we call (7.7)
with γ=1, the isothermal gas flow equations.
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7.2 Shallow water equations

Consider the movement of water in a channel of uniform width. Let the depth be small compared to
the characteristic dimensions of the problem. This allows for the hydraulic approach (see for instance
[44] and [47]), in which the vertical water velocity can be disregarded with respect to the horizontal
water velocity v, which in turn is assumed to be constant in each cross-section: v=v(x, t) only.

������������������������������������

h(x, t)

air

water

x

Figure 7.1. Shallow water approximation

Let ρ denote the constant density of the water. Mass conservation, applied to a thin vertical layer of
water (the shaded column in Figure 7.1) gives

∂h

∂t
+

∂

∂x
(vh) = 0 (7.8)

and momentum conservation yields

ρh
Dv

Dt
+

∂

∂x

{∫ h

0
ρg(h− z)dz

}
= 0 .

This results in the Euler equation

∂v

∂t
+

∂

∂x

{
v2

2
+ gh

}
= 0 . (7.9)

Putting z=gh in (7.8) and (7.9), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂z

∂t
+

∂

∂x
(vz) = 0 ,

∂v

∂t
+

∂

∂x

(
v2

2
+ z

)
= 0 .

(7.10)

This system is known as the shallow water equations.

7.3 p-System: nonlinear wave equation

We want to rewrite the equations for isentropic flow (7.7) in terms of material or Lagrangian coordi-
nates. In doing this we follow [44]. For a given fluid particle, let a∈ IR denote its initial position. The
position at time t>0 is found by solving the initial value problem⎧⎪⎨⎪⎩

dx
dt

= v(x, t) , t > 0 ,

x(0) = a .
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Denoting the solution by x=x(a; t), we introduce

ρ(x, t) = ρ(x(a, t), t) =: ρ̂(a, t) ,
v(x, t) = v(x(a, t), t) =: v̂(a, t) ,

and

p(x, t) = p(x(a, t), t) =: p̂(a, t) .

The rules for differentiation are

∂ρ̂

∂t
= v

∂ρ

∂x
+
∂ρ

∂t
and

∂ρ̂

∂a
=
∂ρ

∂x

∂x

∂a
.

Tracking fluid particles as in Figure 7.2, we obtain from mass-conservation∫ a2

a1

ρ0(x)dx =
∫ x(a2;t)

x(a1;t)
ρ(x, t)dx ,

for every −∞<a1<a2<∞ and for all t>0.

x

t

a2a1

ρ(x, t)

ρ0(x)

x(a2; t)x(a1; t)

Figure 7.2. Particle flow in x− t plane

This implies

∂x

∂a
=
ρ0

ρ
=
ρ0

ρ̂
.

Hence the equations for isentropic flow transform into

∂ρ̂

∂t
+
ρ̂ 2

ρ0

∂v̂

∂a
= 0 and

∂v̂

∂t
+

1
ρ0

∂p̂

∂a
= 0 .

Introducing û=
1
ρ̂

as the specific volume, and the stretching

y(a) :=
∫ a

ρ0(x)dx, (ρ0 initial density) ,
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we obtain (after droppinĝ) ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u

∂t
− ∂v

∂y
= 0 ,

∂v

∂t
+
∂p

∂y
= 0 ,

(7.11)

where p=p(u) follows from (7.6): p=κu−γ .

In a more general context, i.e. p : IR+→ IR+ such that p′<0, p′′>0, we call (7.11) the p-system. It is
studied in detail in SMOLLER [67], where further references are given.

Remark 7.1. By cross-differentiating equations (7.11) we find the nonlinear wave equation

∂2u

∂t2
+
∂2p(u)
∂y2

= 0 . (7.12)

Remark 7.2. Considering the first equation in (7.11) as a divergence, we know that there exists a
stream function ψ, on simply connected domains, such that

∂ψ

∂y
= u and

∂ψ

∂t
= v . (7.13)

Using the first expression in (7.13) gives the nonlinear wave equation

∂2ψ

∂t2
+

∂

∂y
p

(
∂ψ

∂y

)
=
∂2ψ

∂t2
+ p ′

(
∂ψ

∂y

)
∂2ψ

∂y2
= 0 . (7.14)

Here
√−p ′ denotes the wave speed.

7.4 Chromatography of two solutes

This example is taken from RHEE, ARIS & AMUNDSON [63]. Suppose two solutes A1 and A2 are
present in a fluid which moves through a homogeneous porous column.

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

x

q

Figure 7.3. Solute transport through a column

We suppose that the solute concentrations c1 and c2 are at tracer level, which means that the fluid flow
is not affected by these concentrations and can be regarded as given (q > 0). The solutes undergo
adsorption reactions with the porous skeleton and it is assumed that chemical equilibrium has been
reached. If n1 and n2 denote the adsorbed concentrations of A1 and A2, we find in the absence of
dispersion and diffusion the balance equations

∂

∂t
(φc1 + (1 − φ)n1) + q

∂c1
∂x

= 0 (7.15a)
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and

∂

∂t
(φc2 + (1 − φ)n2) + q

∂c2
∂x

= 0 . (7.15b)

Here φ∈ (0, 1) denotes the porosity of the medium. To find n1 and n2 we argue as follows. Let the
total number of sites at which adsorption takes place be bounded. Then the total adsorbed concentra-
tion n1+n2 cannot exceed an upperbound, N say. Hence N−n1−n2 is proportional to the number of
vacant sites. For the rate of adsorption of A1 we have

ra1 = ka1(N − n1 − n2)c1 .

At equilibrium this is balanced by the rate of desorption rd1 =kd1n1, which gives

K1(N − n1 − n2)c1 = n1 , (7.16)

where K1 =ka1/kd1 . Similarly we find for A2

K2(N − n1 − n2)c2 = n2 . (7.17)

Equations (7.16) and (7.17) can be solved to give the Langmuir isotherms

n1 =
NK1c1

1 +K1c1 +K2c2
and n2 =

NK2c2
1 +K1c1 +K2c2

. (7.18)

Substitution of these expressions into equations (7.15a) and (7.15b) leads to two coupled first order
equations for the concentrations c1 and c2. Introducing the moving coordinates

y =
1 − φ

q
x and τ = t− φ

q
x ,

equations (7.15a) and (7.15b) become

∂

∂τ
n1(c1, c2) +

∂c1
∂y

= 0 , (7.19a)

∂

∂τ
n2(c1, c2) +

∂c2
∂y

= 0 . (7.19b)

Note that (7.16) and (7.17) also imply

c1 =
1
K1

n1

N − n1 − n2
and c2 =

1
K2

n2

N − n1 − n2
,

which puts (7.19) in the “standard” form

∂n1

∂τ
+

∂

∂y
c1(n1, n2) = 0 ,

∂n2

∂τ
+

∂

∂y
c2(n1, n2) = 0 .
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7.5 Polymer flooding

Polymer flooding occurs in reservoir engineering. Polymers are dissolved in the water phase in order
to increase the water viscosity and thus to stabilize the water-oil displacement process. This implies
that the fractional flow function (Fw in Chapter 12) now depends on both the water saturation s and the
polymer concentration c. Moreover it is assumed that the polymer undergoes equilibrium adsorption
with the immobile phase, say according to a Langmuir isotherm (see also (7.18)). After appropriate
scaling and balancing one finds for the water saturation and the polymer concentration the system of
coupled equations, see [63] for details,

∂s

∂t
+
∂fw

∂x
= 0 (7.20a)

and

∂

∂t
(sc+ ca) +

∂

∂x
(cfw) = 0 . (7.20b)

Here fw =fw(s, c) and ca =g(c). Typical examples are

fw(s, c) =
s3

s3 + α(1 + βc)(1 − s)2(1 + 2s)

and

g(c) =
NKc

1 +Kc
,

where α, β,K are positive constants, and where 0�s�1 and c�0.

7.6 Conclusions

In the previous sections we have derived examples of systems of first order partial differential equa-
tions, mostly two equations with two unknowns, arising in different areas of physics and engineering.
We also gave references in which the underlying models are treated in great detail and depth.

Up to simple transformations, these systems all have the form of coupled conservation laws

∂u
∂t

+
∂f (u)
∂x

= 0 , (7.21)

where u : IR × IR+ → IRn and f : IRn → IRn. Furthermore in the examples the vectorfunctions f
are smooth, i.e. the components fi = fi(u1, u2, · · · , un), i=1, 2, · · · , n, are smooth functions of the
variables u1, u2, · · · , un.

This motivates us to study in the next chapters systems of the form (7.21) with smooth nonlinearities.
In particular Chapter 9 is devoted to the construction of a particular solution of the isothermal gas flow
equations: i.e. equations (7.7) with γ=1.
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8 Linear hyperbolic systems

We consider here the initial value problem for the linear system

∂u
∂t

+A
∂u
∂x

= 0 in Q = IR × IR+ , (8.1a)

u(·, 0) = u0(·) on IR , (8.1b)

where u : Q → IRn and A is a constant n × n-matrix. We first verify the well-posedness of this
problem. We do this by considering solutions in the form of complex plane waves

u(x, t) = ξ exp {i(λt− µx)} , for (x, t) ∈ Q , (8.2)

where ξ is a constant n-vector. At t=0 we want to have a bounded initial value. This forces µ to be
real. Substitution of (8.2) into (8.1a) gives

µAξ = λξ ,

implying that λ/µ is an eigenvalue of the matrix A. Writing λ/µ=a+bi and ξk = |ξk| exp {iαk} for
each of the n components of the eigenvector ξ, we obtain from (8.2) the real valued plane waves

uk(x, t) = |ξk| cos(αk + µ(at− x)) exp {−µbt} , for (x, t) ∈ Q ,

for k=1, 2, · · · , n. Now let N>0 be given. Then taking |ξk|=N−1 and µ=−2N logN/b, we have

max
x∈IR

|uk(x, 0)| = |ξk| = N−1 ,

while

max
x∈IR

∣∣uk(x,N−1)
∣∣ = |ξk| exp {−µb/N} = N .

To have continuous dependence on initial data, we must require b = 0. This forces A to have real
eigenvalues, for which we call system (8.1a) weakly hyperbolic. If in addition the eigenvalues are
distinct, we say that (8.1a) is a hyperbolic system. Throughout this section we assume that (8.1a) is
hyperbolic.
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8.1 Decoupling of equations

The matrix A can be diagonalized because it has distinct eigenvalues, see for instance STRANG [69].
Let

A = TΛT−1 ,

where Λ = diag{λ1, λ2, · · · , λn} is the diagonal matrix of eigenvalues and T = [t1|t2| · · · |tn] the
matrix of linear independent eigenvectors such that

Atk = λktk for k = 1, 2, · · · , n .

We now solve (8.1a) by making the change of variables u = Tv. Substituting this into (8.1a) and
multiplying the result by the constant matrix T−1 yields

∂v
∂t

+ Λ
∂v
∂x

= 0 .

In other words we have achieved a decoupling of the system (8.1a) into n dependent scalar equations

∂vk

∂t
+ λk

∂vk

∂x
= 0 , k = 1, 2, · · · , n .

Each of these is a constant coefficient linear equation, with solution

vk(x, t) = vk(x− λkt, 0) .

Since v=T−1u, the initial value for vk is simply the kth component of the vector T−1u0. Thus

vk(x, t) =
(
T−1u0(x− λkt)

)
k

for k = 1, 2, · · · , n . (8.3)

Finally we use u=Tv to obtain as a solution of (8.1)

u(x, t) =
n∑

k=1

(
T−1u0(x− λkt)

)
k
tk , with (x, t) ∈ Q . (8.4)

Note that u(x, t) depends only on the initial data at the points x−λkt. We say that the domain of
dependence for an arbitrary point (x∗, t∗)∈Q is given by

D(x∗, t∗) = {x ∈ IR : x = x∗ − λkt
∗, k = 1, 2, · · · , n} . (8.5)

Curves x=x0+λkt, satisfying x′(t)=λk , are called “the characteristics of the kth family”, or simply
the “kth-characteristics”. Note that n distinct characteristics curves pass through each point in the x−t
plane.

Remark 8.1. The domain of dependence in parabolic problems is the whole space on which the
problem is defined. For instance, consider the initial value problem for the heat equation (d>0)⎧⎪⎪⎨⎪⎪⎩

∂u

∂t
= d

∂2u

∂x2
in Q ,

u(·, 0) = u0(·) on IR .
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x

(x∗, t∗)
t

Figure 8.1. Domain of dependence (8.5) for a given point (x∗, t∗)

The solution is given by

1

2
√
dπt

∫
IR
u0(y) exp

{−(x− y)2/4dt
}

dy ,

which shows that

D(x∗, t∗) = IR for all (x∗, t∗) ∈ Q .

Remark 8.2. The solution procedure described in this section only applies for piecewise smooth
initial data. Across any discontinuity the equation must be satisfied in the sense of the Rankine–
Hugoniot shock conditions. We return to this point in the next section where we treat the Riemann
problem in detail.

Application : linear wave equation. Consider the initial value problem for the linear wave equation⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
= c2

∂2u

∂x2
in Q ,

u(·, 0) = φ(·) on IR ,

∂u

∂t
(·, 0) = ψ(·) on IR .

(8.6)

To solve this problem we put the differential equation in (8.6) in the form of a first order hyperbolic
system. This is done by introducing the vector

u =

⎛⎜⎜⎝
∂u

∂x

∂u

∂t

⎞⎟⎟⎠
and by writing

∂u
∂t

+A
∂u
∂x

= 0 in Q ,

with

A =
(

0 −1
−c2 0

)
.
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The initial data becomes

u(·, 0) = u0(·) =

⎛⎝φ ′(·)

ψ(·)

⎞⎠ .

The matrix A has eigenvalues λ1 =−c, λ2 =c and the corresponding matrix of eigenvectors is

T =
(

1 1
c −c

)
with T−1 =

1
2

(
1 c−1

1 −c−1

)
.

Hence according to (8.3) we have

v1 =
(
T−1u0(x+ ct)

)
1

=
1
2
{
φ′(x+ ct) +

1
c
ψ(x+ ct)

}
,

v2 =
(
T−1u0(x− ct)

)
2

=
1
2
{
φ′(x− ct) − 1

c
ψ(x+ ct)

}
,

and from (8.4)

u(x, t) =

⎛⎜⎜⎝
∂u

∂x

∂u

∂t

⎞⎟⎟⎠ =
1
2

⎛⎜⎝φ′(x+ ct) +
1
c
ψ(x+ ct) + φ′(x− ct) − 1

c
ψ(x− ct)

cφ′(x+ ct) + ψ(x+ ct) − cφ′(x− ct) + ψ(x− ct)

⎞⎟⎠ .

Finally, integration yields

u(x, t) =
1
2
{
φ(x+ ct) + φ(x− ct)

}
+

1
2c

∫ x+ct

x−ct
ψ(s)ds .

8.2 Riemann problem

The Riemann problem for equation (8.1a) is the initial value problem with piecewise constant data,
i.e.

u0(x) =

{
ul, for x < 0 ,
ur, for x > 0 .

Because we are dealing here with a constant coefficient linear system, the Riemann problem can be
solved by decoupling the equations. Below we give the construction.

Let us assume without loss of generality that the eigenvalues of the matrix A are ordered:

λ1 < λ2 < · · · < λn .

We now proceed as follows. By u=Tv we have

u =
n∑

k=1

vktk ,
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and thus we start by decomposing u0 accordingly:

ul =
n∑

k=1

αktk and ur =
n∑

k=1

βktk . (8.7)

Hence

vk(x, 0) =

{
αk, for x < 0 ,
βk, for x > 0 ,

and consequently

vk(x, t) =

{
αk for x− λkt < 0 ,
βk for x− λkt > 0 .

For a given (x, t)∈Q, let K(x, t) denote the maximum value of k for which x−λkt>0. If x−λkt<0
for all k, we set K(x, t)=0. Then there results

u(x, t) =
K(x,t)∑
k=1

βktk +
n∑

k=K(x,t)+1

αktk . (8.8)

Note that u is constant for those combinations of x and t giving rise to the same K . This is the case
for points taken from cones in the x−t plane. For instance, see also Figure 8.2,

K(x, t) = l on {(x, t) : t > 0 and λlt < x < λl+1t} .

K = 3

K = 1

K = 0

K = 2

λ1

λ2 λ3

x

t

O

Figure 8.2. Distribution of K values in the x−t plane

The example sketched in Figure 8.2 leads to a solution as shown in Figure 8.3. Note that here n=3.
Along the kth-characteristic the solution is discontinuous. The jump [u] is given by

[u] = (βk − αk)tk .

Note that f(u)=Au jumps according to

[f ] = A[u] = (βk − αk)Atk

= (βk − αk)λktk .
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λ2 λ3

t

O

β1t1 + β2t2 + α3t3

β1t1 + α2t2 + α3t3
λ1

xα1t1 + α2t2 + α3t3 = ul

β1t1 + β2t2 + β3t3 = ur

Figure 8.3. The solution (8.8) in the x−t plane

Hence accross the kth-characteristic we have

[f ] = λk[u] ,

in which we recognize the Rankine–Hugoniot condition.

λi

x

t

O

u = ur

u = ul

Figure 8.4. Propagation of a single shock

An alternative form for the solution u can be obtained from Figure 8.3. One has

u(x, t) = ul +
∑

λk<x/t

(βk − αk)tk

= ur −
∑

λk>x/t

(βk − αk)tk .

Substracting the equations in (8.7) yields

ur − ul =
n∑

k=1

(βk − αk)tk .

This means that if ur−ul is already an eigenvector of A, i.e. ur−ul =c ti for some i∈{1, 2, · · · , n},
then βi−αi =c and βk−αk =0 for all k �= i. Hence a situation as in Figure 8.4 results. In general, how-
ever, the initial jump ul−ur will break up into a sum of jumps (at most n) and each jump (βk−αk)tk

will travel with speed λk.
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When n=2, it is often convenient to investigate the solution of Riemann problems in the phase plane,
i.e. the u1−u2 plane. Each vector is represented by a point in this plane. Furthermore a discontinuity
with left and right states ul and ur, respectively, can only propagate as a single discontinuity if ur−ul

is parallel to one of the eigenvectors t1 and t2. Thus given a state ul, we find all other states ur, for
which ur−ul travels as single discontinuity, by taking ur from lines parallel to t1 and t2, passing
through the point ul.

O
u1

t1

t2

1

2

u2

ul

Figure 8.5. The Hugoniot locus of the state ul

O

t1

t2

u1

u2

ur

ul
um

Figure 8.6. Construction of intermediate state um

If ur is taken from line 1 we call the solution a 1-wave. With ur from line 2 there results a 2-
wave. For a general Riemann problem with arbitrary ul and ur, the solution has two discontinuities
travelling with speeds λ1 and λ2, with an intermediate state um given by

um = β1t1 + α2t2 ,

so that ul−um = (α1−β1)t1 and ur−um = (β2−α2)t2. This leads to a phase plane picture as in
Figure 8.6.
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9 Riemann problem for nonlinear
equations: the construction

We now consider the nonlinear Riemann problem

(R)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t

+
∂f(u)
∂x

= 0 in Q ,

u(x, 0) =

{
ul for x < 0 ,
ur for x > 0 ,

(9.1)

where f : IRn → IRn is a smooth vector valued function. In this chapter the emphasis will be on
the construction of solutions. In Chapter 10 we study the underlying mathematical framework. The
system in (9.1) can be put in the quasilinear form

∂u
∂t

+A(u)
∂u
∂x

= 0 in Q ,

where A(u)=Df(u) is the n× n Jacobian matrix. Again we call the system hyperbolic if A(u) has
real and distinct eigenvalues for all u, at least for all u in the range where the solution is known to lie,
such that λ1(u)<λ2(u)< · · ·<λn(u). The corresponding n linearly independent eigenvectors are
denoted by tk(u) for k=1, 2, · · · , n.

As in the linear case we can find the characteristics by integrating the eigenvalues ofA(u). Again there
are n distinct characteristic curves passing through each point in Q. For instance the kth characteristic
through the point (x0, t0)∈Q is determined by the initial value problem{

x′(t) = λk

(
u(x(t), t)

)
x(t0) = x0 .

However since λk depends on u, the a-priori unknown solution of the problem, we can no longer
solve the system by first determining the characteristics and then applying a decoupling.

In the linear case the solution of the Riemann problem consists of n waves (or shocks), which are
discontinuities travelling at the characteristic velocities of the system. However, in the nonlinear
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case the physically relevant solution may contain rarefaction waves as well as shock waves. In the
first section we shall disregard the rarefaction waves (and thus the entropy conditions) and construct
solutions of the Riemann problem consisting of (n) shocks only, propagating with constant speeds
s1<s2< · · ·<sn. According to the general theory, as demonstrated in Chapter 10, this can always be
done if ||ul−ur|| is sufficiently small. After this construction we discuss the entropy conditions and
build rarefaction waves into the solution.

9.1 Shocks

A shock or discontinuity in a solution of equation (9.1) is characterized by the values ul and ur on the
left and right side, respectively, and by the speed s. We shall use the notation {ul, ur, s} for a shock.
Interpreting solutions in a weak sense, as in the scalar case, we obtain that any shock should satify the
Rankine–Hugoniot relation

f(ur) − f(ul) = s(ur − ul) . (9.2)

Suppose we fix a point u0 ∈ IRn and attempt to determine the set of all points u ∈ IRn that can be
connected to u0 by a discontinuity satisfying (9.2) for some s. In the linear case, this leads to n
families of solutions un(ξ), −∞<ξ<∞, each with its own shockspeed sn: i.e. for 1�k�n{

uk = uk(ξ; u0) = u0 + ξtk ,

sk = λk .

See also Figure 8.5 (for the case n=2).

In the nonlinear case one also finds n families of solutions, or n curves through the point u0. They
are parametrized by uk = uk(ξ; u0), with uk(0; u0) = u0, and we denote by sk = sk(ξ; u0) the
corresponding shock speed. To simplify notation, we will frequently write uk(ξ), sk(ξ) when the
point u0 is clearly understood. Substitution into (9.2) gives

f
(
uk(ξ)

) − f(u0) = sk(ξ)
(
uk(ξ) − u0

)
.

Assuming uk and sk to depend smoothly on ξ, we find after differentiating and after setting ξ=0

Df(u0)u′
k(0) = sk(0)u′

k(0) .

Hence

u′
k(0) = αtk(u0) , α ∈ IR , (9.3a)

sk(0) = λk(u0) , (9.3b)

implying that the curve uk(ξ) is tangent to tk(u0) at the point u0.

For smooth f , we show in Chapter 10 that such solution curves exist locally in a neighbourhood of
u0, and that the representations uk and sk are smooth. This is an application of the implicit-function
theorem, see also LAX [45] or SMOLLER [67]. The solution curves uk are called the Hugoniot curves
and the set of all points on these curves is called the Hugoniot locus for the point u0.

If u lies on the kth Hugoniot curve through u0, we say that u and u0 are connected by a k-shock. In
many applications, with f explicitly given, the Hugoniot curves exist globally, that is for all relevant
u-values. This is clearly the case in the following example.
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Example 9.1. Isothermal equations of gas dynamics: i.e. equations (7.7) with γ=1. Writing m=ρv
for the momentum and a2 =κ, these equations become⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ρ

∂t
+
∂m

∂x
= 0 ,

∂m

∂t
+

∂

∂x

(
m2

ρ
+ a2ρ

)
= 0 .

(9.4)

Setting u=(ρ,m)T , we put (9.4) in the form ut+f(u)x =0 and obtain for the Jacobian matrix

Df(u) =

⎛⎜⎝ 0 1

a2 − m2

ρ2

2m
ρ

⎞⎟⎠ .

This matrix has eigenvalues

λ1(u) =
m

ρ
− a and λ2(u) =

m

ρ
+ a , (9.5)

with corresponding eigenvectors

t1(u) =
(
1,
m

ρ
− a

)T
and t2(u) =

(
1,
m

ρ
+ a

)T
. (9.6)

Next we determine the Hugoniot curves uk(ξ; u0) and the speeds sk(ξ; u0). The Rankine–Hugoniot
conditions for the states u and u0 become

m−m0 = s(ρ− ρ0) ,(
m2

ρ
+ a2ρ

)
−

(
m02

ρ0
+ a2ρ0

)
= s(m−m0) .

These equations can be solved for m and s in terms of ρ. Writing

ρk(ξ; u0) = ρ0(1 + ξ) , with ξ > −1 and k = 1, 2 ,

we obtain the parametrized curves

u1(ξ; u0) = u0 + ξ

⎡⎣ ρ0

m0 − aρ0
√

1 + ξ

⎤⎦ , s1(ξ; u0) =
m0

ρ0
− a

√
1 + ξ , (9.7)

and

u2(ξ; u0) = u0 + ξ

⎡⎣ ρ0

m0 + aρ0
√

1 + ξ

⎤⎦ , s2(ξ; u0) =
m0

ρ0
+ a

√
1 + ξ , (9.8)

where (9.7) is the 1-curve and (9.8) the 2-curve. Equations (9.7) and (9.8) imply

duk

dξ
(0; u0) = ρ0tk(u0) , sk(0; u0) = λk(u0) , k = 1, 2 ,

which is consistent with the previous results (9.3). In Figure 9.1 some examples of Hugoniot curves
are given.
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mm

t1

1-curve

2-curve

ρρ

1

1

t2

(a) (b)

Figure 9.1. (a) Hugoniot locus for the state u0 = (1, 1)T related to the isothermal gas flow equations (a =
1, γ = 1). (b) Variation of these curves for u0 = (ρ0, 0)T with ρ0 = 1, 3

Remark 9.2. The curves in the Hugoniot locus for the state u0 are not integral curves (i.e. curves
being tangent to the eigenvectors in all their points) of the system. This only occurs at the point u0.
We shall encounter integral curves when dealing with rarefaction waves.

Remark 9.3. Every Hugoniot locus in Example 9.1 terminates at the origin, which is clearly a singu-
lar point of the system. The origin is called the vacuum state, since ρ=0.

Ignoring possible entropy conditions, we now give the construction of a solution of the Riemann
problem involving only shocks. We first return to Example 9.1. As in the linear case, see Figure 8.6,
we want to determine an intermediate state um to connect ul to ur. In the phase plane we draw the
Hugoniot locus for ul and ur, see Figure 9.2, and again find two intersection points: the states um

and u∗
m. Thus we can connect ul to um by a 1-shock and then to ur by a 2-shock or, the other path,

connect ul to u∗
m by a 2-shock and then to ur by a 1-shock. To reject one possibility we investigate

the corresponding shock speeds. We find

s1(ξ; um) =
mm

ρm
− a

√
1 + ξ <

mm

ρm
, ξ > −1 ,

and

s2(ξ; um) =
mm

ρm
+ a

√
1 + ξ >

mm

ρm
, ξ > −1 .

Knowing now that the speed of a 1-shock is smaller than the speed of a 2-shock, we reject the inter-
section leading to u∗

m because the shock from ul to u∗
m would travel faster than the shock going from

u∗
m to ur: it would lead to a multi-valued solution.

To solve a Riemann problem for a general system in IRn, one needs to determine a sequence of
intermediate states u1, u2, · · · , un−1 such that ul is connected to u1 by a 1-shock, u1 is connected
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ρ

1

1

22

m

O

ur

um

ul

u∗
m

Figure 9.2. Construction of intermediate state um

to u2 by a 2-shock, · · · , un−1 is connected to ur by a n-shock. If ||ul−ur|| is sufficiently small, this
can always be achieved, see again Chapter 10, or [45], [67]. The idea behind it is quite simple: from
any given state u0, we can reach a one-parameter family of states u1(ξ1) by a 1-shock. From each
u1(ξ1) we can reach another one-parameter family of states u2(ξ1, ξ2) by a 2-shock. Continuing, we
find that from u0 we can reach a n-parameter family of states un(ξ1, · · · , ξn). Since

∂un

∂ξk

∣∣∣∣∣
ξ1=···=ξn=0

∼ tk(u0) , for k = 1, · · · , n ,

we know that the map un : IRn → IRn is non-singular and hence bijective near the origin. Hence
for any ur sufficiently close to ul, there exists a unique set of parameters ξ∗1 , · · · , ξ∗n such that
un(ξ∗1 , · · · , ξ∗n) = ur. Note that since the eigenvalues λk(u0) are ordered, the corresponding shock
speeds are ordered (by continuity) as well.

Next we discuss entropy conditions.

9.2 Entropy conditions and genuine nonlinearity

In Part I we discussed various forms of the entropy condition for the scalar equation. In these dis-
cussions the convexity/concavity of f , the scalar flux function, plays a crucial role. For instance for
f ′′>0, we pose the Lax entropy inequalities

f ′(ur) < s < f ′(ul) , (9.9)

where s denotes the shockspeed and ur, ul the right, left values of u at the shock. In order to generalize
(9.9) to systems, we first need to generalize the convexity condition. We shall now require, see also
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[45], [67],

∇λk(u) · tk(u) �= 0 , for all u , (9.10)

and for k = 1, · · · , n. If this property holds, we call the characteristic fields genuinely nonlinear.
Hence the proper generalization requires not only that ∇λk(u) �= 0, but in addition that it is not
orthogonal to the corresponding eigenvector. It implies that the eigenvalues vary monotonically along
integral curves. Without this property it is impossible to construct rarefaction waves, see Section
9.3. Conditions (9.10) are also needed to prove equivalence between vanishing viscosity solutions
and entropy solutions, see [45] and Chapter 11. Before we turn to the entropy inequalities, we first
consider the linear problem

∂u
∂t

+A
∂u
∂x

= 0

in the quarter plane x > 0, t > 0. Here A is a constant n × n matrix with eigenvalues λ1 < · · · <
λk < 0< λk+1 < · · ·< λn. Applying a decoupling as in Chapter 8, we find that (n−k) conditions
on the components of u must be specified along the boundary x = 0. More generally, if we don’t
have a quarter plane problem, but instead we have a boundary which moves with speed s and if
λ1< · · ·<λk<s<λk+1< · · ·<λn, we must give (n−k) conditions on u along x=st, to specify the
solution in the region x>st, t>0.

If we have a discontinuity of the hyperbolic system (9.1) in the x, t-plane, the above remarks can be
extended. Let ul and ur, respectively, be the values of u on the left and right of a discontinuity which
moves with speed s. Suppose that for some 1�k�n,

λk(ur) < s < λk+1(ur) .

To determine the solution to the right of the discontinuity, we should specify (n−k) conditions on the
right boundary of the shock. Similarly, looking at the left boundary, if

λj(ul) < s < λj+1(ul) ,

for some 1 � j � n, we must specify j conditions on the left boundary of the shock (in order to
determine the solution to the left of it). Across the shock the Rankine–Hugoniot conditions (9.2) give
n equations (or conditions) between ul, ur and s. Eliminating s, leaves us with (n−1) conditions
between ul and ur. Thus we should require

(n− k) + j = n− 1 or j = k − 1 .

Hence we can admit a discontinuity {ul,ur, s}, if for some index k, 1�k�n,

λk(ur) < s < λk+1(ur) , (9.11a)

λk−1(ul) < s < λk(ul) . (9.11b)

A discontinuity {ul, ur, s} across which these relations hold is called an admissible k-shock. We refer
to inequalities (9.11) as the Lax entropy inequalities. Rewriting (9.11), we have:

a discontinuity {ul, ur, s} is admissible (in the sense of Lax) if

• it satisfies the Rankine–Hugoniot condition; (9.12a)

• λk(ur)<s<λk(ul); (9.12b)

• λk−1(ul)<s<λk+1(ur), (9.12c)
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for some k, 1�k�n.

Hence for only one index k the shock speed s is intermediate to the characteristic speeds λk on both
sides of the shock.

What are the consequences of (9.12) for the shock solution in Example 9.1. In other words, which of
the intermediate states um as shown in Figure 9.2 give admissible shocks? Along 1-curves (giving
1-shocks) we impose

λ1(ur) < s < λ1(ul) , (9.13a)

s < λ2(ur) , (9.13b)

and along 2-curves (giving 2-shocks) we impose

λ2(ur) < s < λ2(ul) , (9.13c)

λ1(ul) < s . (9.13d)

Before we investigate the implications of (9.13) we first need to verify the genuine nonlinearity (9.10)
for k=1, 2. This is satisfied, since

∇λ1(u) · t1(u) = −a
ρ
< 0 ,

∇λ2(u) · t2(u) = +
a

ρ
> 0 .

Using (9.5) and (9.7) in (9.13a-9.13b) results in the inequalities

mr

ρr
− a <

mr

ρr
− a

√
ρl

ρr
=
ml

ρl
− a

√
ρr

ρl
<
ml

ρl
− a (9.14)

and

mr

ρr
− a

√
ρl

ρr
<
mr

ρr
+ a . (9.15)

The inequalities in (9.14) are satisfied if

ρl < ρr (for 1-shocks) ,

and (9.15) imposes no restriction. Similarly we obtain admissible shocks along a 2-curve only if

ρl > ρr (for 2-shocks) .

Remark 9.4. The velocity of the fluid is given by v=m/ρ. Hence the expressions for the shock speed
imply for 1-shocks

s =
mr

ρr
− a

√
ρl

ρr
< vr
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and also

s =
ml

ρl
− a

√
ρr

ρl
< vl .

Thus the fluid velocity on both sides of the shock exceeds the shock speed: a fluid particle moves
through the shock from left to right. Thus the entropy conditions require that the density increases
when passing through a shock. For 2-shocks we have

s =
mr

ρr
+ a

√
ρl

ρr
> vr

and also

s =
ml

ρl
+ a

√
ρr

ρl
> vl .

Hence 2-shocks travel faster than the fluid velocity on either side: now a fluid particle moves through
the shock from right to left. Consequently, the entropy conditions (implying ρl>ρr) result again in a
situation where the density increases when fluid passes through a shock.

In Figure 9.3 we show the admissible shocks for given states ul and ur. Note that here the interpreta-
tion of left and right is of crucial importance.

ρ

m

ρ

m

1 1

22

ml ul

ρl

mr ur

ρr

Figure 9.3. Admissible shock-curves for given left and right states

With reference to Figure 9.2, we now see that only the shock from ul to um is admissible. The
“non-physical” shock from um to ur needs to be replaced by a rarefaction wave. Combining both
admissible possibilities in Figure 9.3, we can construct for a given state ul, the ur-region for which
the solution of the Riemann problem consists of two entropy shocks. This is shown in Figure 9.4.
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2

ρ

1

2m

ul

um

ur

Figure 9.4. Taking ur from the shaded region results in a solution of the Riemann problem with two admissible
shocks

Remark 9.5. For a constant coefficient, linear system the condition of genuine nonlinearity is violated
for all k because the eigenvalues are constant. More generally, for a nonlinear system it might happen
that in one of the characteristic fields tk(u) the eigenvalue λk(u) is constant along integral curves of
that field. Hence

∇λk(u) · tk(u) = 0 , ∀ u .

Then we say that the kth-field is linearly degenerate. A discontinuity in a linear degenerate field is
called a contact-discontinuity.

9.3 Rarefaction waves

It is clear from the discussion in the previous section that in general the solution of a Riemann problem
cannot consist of shocks only. In order to develop a full solution satisfying the entropy conditions,
one has to incorporate rarefaction waves as well.

Generalizing the scalar case, we call a solution of (R) a rarefaction wave if

u(x, t) =

⎧⎪⎨⎪⎩
ul for x � η lt ,

w(x/t) for η lt < x < η rt ,

ur for x � η rt ,

(9.16)

where −∞ � η l < η r � ∞ and w : (η l, η r) → IRn is a smooth vector valued function satisfying
lim
η↓η l

w(η)=ul and lim
η↑η r

w(η)=ur. Substituting (9.16) into equation (9.1) yields the expression

Df
(
w(η)

)
w′(η) = ηw′(η)
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for η l<η<η r. This implies for some k, 1�k�n:

(i) w′(η)=α(η)tk

(
w(η)

)
, (9.17a)

(ii) λk

(
w(η)

)
=η . (9.17b)

Hence the values of w(η) all lie along an integral curve of tk. In particular the states ul=w(η l+) and
ur =w(η r−) have to lie on the same integral curve. This is a necessary condition! However it is not
sufficient. Along the integral curve η increases monotonically from η l to η r. Thus λk

(
w(·)) has to

increase along that curve as well. From a given state ul we can move along the integral curve only in
the direction in which λk increases. If λk has a local maximum at ul in the direction tk(ul), there are
no rarefaction waves with left state ul. In the generic nonlinear case, there is a one-parameter family
of states that can be connected to ul by a k-rarefaction wave, all those states lying on the integral
curve of tk in the direction of increasing λk up to the next local maximum of λk.

If the kth-field is genuinely nonlinear, then λk is monotonically varying along the entire integral curve.
In that case we see that ul and ur can always be connected by a rarefaction wave provided they be-
long to the same integral curve and λk(ul)<λk(ur). If the kth-field is linearly degenerate, then λk is
constant along the integral curve and no rarefaction waves are possible in this family. If all fields are
genuinely nonlinear, there exist n families of states that can be connected to ul by a rarefaction wave.

The vector w(η) is computed as follows. Differentiating (9.17b) with respect to η yields for η l<η<
η r

∇λk

(
w(η)

) · w′(η) = 1 ,

or

∇λk

(
w(η)

) · tk

(
w(η)

)
α(η) = 1 .

Hence

α(η) =
1

∇λk

(
w(η)

) · tk

(
w(η)

) .
Substituting this expression in (9.17a) gives the ordinary differential equations

w′ =
tk(w)

∇λk(w) · tk(w)
for η l < η < η r , (9.18)

subject to w(η l)=ul. The constants η l, η r follow from (9.17b): η l=λk(ul) and η r =λk(ur).

Next we return to the equations in Example 9.1 and compute the rarefaction waves. Using (9.5), (9.6)
and setting w(η) =

(
ρ(η),m(η)

)T
, we find for the 1-rarefactions the differential equations (putting

k=1 in (9.18))

ρ′(η) = −ρ(η)/a ,
m′(η) = −m(η)/a+ ρ(η) .
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For the moment we solve these equations for η ∈ IR, subject to
(
ρ(η l),m(η l)

)
= (ρl,ml) where

η l =λ1(ul)=
ml

ρl
−a. This gives

ρ(η) = ρl exp {−(η − η l)/a} (9.19)

and

m(η) = {ρl(η − η l) +ml} exp {−(η − η l)/a}
= ρl(η + a) exp {−(η − η l)/a} . (9.20)

As a direct consequence, the 1-integral curve has the parametrization

ρ > 0 , m = m(ρ) =
ml

ρl
ρ− aρ log

ρ

ρl
. (9.21)

This implies

λ1(w) = λ1

(
ρ,m(ρ)

)
= η l − a log

ρ

ρl
,

which shows that λ1 decreases along the 1-integral curve. Thus only that part of the curve where
ρ<ρl can be used for the purpose of constructing a 1-rarefaction.

ρ

m

ρ

m

1-rarefactions

2-rarefactions

2-rarefactions

1-rarefaction

(a) (b)

ml ul

ρl

mr ur

ρr

Figure 9.5. (a) Set of states (solid lines) that can be connected to ul by a rarefaction wave; (b) Set of states
(solid lines) that can be connected to ur by a rarefaction wave

For 2-rarefactions we find

ρ(η) = ρl exp {(η − η l)/a} ,

m(η) = ρl(η − a) exp {(η − η l)/a} ,

and consequently for the 2-integral curve

m(ρ) =
ml

ρl
ρ+ aρ log

ρ

ρl
.
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This implies

λ2(w) = λ2

(
ρ,m(ρ)

)
= η l + a log

ρ

ρl
.

Hence λ2 increases along the 2-integral curve and only that part where ρ>ρl can be used to obtain a
2-rarefaction wave. These results are summarized in Figure 9.5. Note that integral curves are different
from the shock curves in a Hugoniot-locus: only at the point ul (or ur) their tangents coincide. For a
given point u∗, we can now determine the set of all points that can be connected to u∗ by a shock or
a rarefaction. This is done by putting together the curves from Figures 9.3 and 9.5. Interpreting u∗ as
ul gives Figure 9.6(a), u∗ as ur gives Figure 9.6(b). In these figures the curves Sp denote the p-shocks
and Rp the p-rarefactions: at the points ul and ur they match up smoothly. The solution of the general

ρ

m

ρ

m

S2R2

(a) (b)

R1

S2

S1

S1

R2

R1

ml

ρl

ul
mr ur

ρr

Figure 9.6. (a) Set of admissible states for ul; (b) Set of admissible states for ur

Riemann problem for the isothermal equations of gas dynamics (9.4) is found by combining Figures
9.6(a) and (b). This is done in Figure 9.7 for an arbitrary pair of states ul and ur. Again there are two
intersection points, giving the possible intermediate states um and u∗

m. However, as a general rule, we
always have first a 1-wave followed by a 2-wave (shock or rarefaction). The other possibility leads to
multivaluedness in the solution and is therefore rejected. Indeed, for the state um we have

S1(ul, um) =
mm

ρm
− a

√
ρl

ρm
<
mm

ρm
+ a = λ2(um) = ηm < λ2(ur) = η r .

The solution in the x−t plane is shown in Figure 9.8.
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ρ

m

O

u∗
m S2(ur)

S1(ur)
R2(ul)

ur

S1(ul)
R2(ur)

R1(ul)
um

R1(ur)

S2(ul)

ul

Figure 9.7. Construction of the admissible entropy solution of the Riemann problem for the isothermal equa-
tions of gas dynamics

x

t

O

x = S1(ul, um)t x = ηmt

u = um

u = ul

x = η rt

u = ur

Figure 9.8. Solution of Riemann problem in x−t plane
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10 Riemann problem for nonlinear
equations: the theory

In the previous chapter we discussed in detail the construction of the entropy solution. Following
SMOLLER [67] and LAX [45], we now consider the existence and uniqueness questions.
Throughout we assume that the flux vector function

f : N ⊆ IRn → IRn , for some neighbourhood N ,

is smooth, e.g. f ∈ C2(N), and satisfies the hyperbolicity conditions. Thus the Jacobian matrix
Df(u) has real, distinct eigenvalues λ1(u)< · · ·<λn(u) and corresponding to each λk(u) we have

a right (column) eigenvector tk(u) and a left (row) eigenvector
(
�k(u)

)T
. All the eigenvalues and

eigenvectors are smooth functions of u. For vectors a, b∈ IRn we use the inner-product notation

a · b =
n∑

i=1

aibi = aT b .

We observe that

�i(u) · tj(u) = 0 for all 1 � i, j � n , i �= j , (10.1)

and

�k(u) · tk(u) �= 0 for all 1 � k � n . (10.2)

These facts follow from some simple linear algebra. If

Ax = λx and yTA = µyT with λ �= µ �= 0 ,

we deduce from

yT x =
1
µ
yTAx =

λ

µ
yT x

that yT x=0, implying (10.1). Since all tk are linearly independent, (10.2) is immediate.

An important role in the general theory is played by Riemann invariants. In Section 10.1 we give the
definition, an existence result and some examples. Then we consider rarefaction waves in Section
10.2 and shock waves in Section 10.3. The solvability of the Riemann problem, for ||ur−ul|| small,
is discussed in Section 10.4.
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10.1 Riemann invariants

We begin with

Definition 10.1. Let 1�k�n. A k-Riemann invariant is a smooth function w :N→ IR, satisfying

tk · ∇w = 0 in N ,

i.e. w is constant along the k-integral curve.

The following proposition says that there are precisely n−1 Riemann invariants along each integral
curve.

Proposition 10.2. There exist (n−1) k-Riemann invariants whose gradients are linearly independent
in N .

Proof. For any smooth function w :N→ IR (with N sufficiently small) and 1�k�n, we consider

Tkw := tk · ∇w in N .

In N we can choose a coordinate system {Z1, · · · , Zn}, with Zi =Zi(u) for i=1, · · · , n, such that

Tkw=
∂w

∂Z1
.

u1

u2

Z2

t2 t1

N

Z1 : 1-integral curve

Figure 10.1. Definition of coordinate system {Z1, Z2} for k=1

Then define in N the functions wi =Zi+1, for i=1, · · · , n−1. This gives

Tkwi =
∂wi

∂Z1
=
∂Zi+1

∂Z1
= 0

and

∇wi =
(
∂wi

∂Z1
, · · · , ∂wi

∂Zn

)
= (0, · · · , 1, · · · , 0) ,

for 1� i�n−1, showing that the gradients are linearly independent.

Below we give two examples to clarify the construction
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Example 10.3. Riemann invariants for the isothermal gas flow equations. Using (9.21) we have

(ρ,m)∈1-integral curve if and only if ρ>0 and m(ρ)=
ml

ρl
ρ−aρ log

ρ

ρl
. Hence

m

ρ
+ a log ρ =

ml

ρl
+ a log ρl = constant

along a 1-integral curve, implying that

w1(ρ,m) =
m

ρ
+ a log ρ

is the 1-Riemann invariant. Similarly we obtain that

w2(ρ,m) =
m

ρ
− a log ρ

is the 2-Riemann invariant. Indeed, using (9.6) one easily verifies

t1 · ∇w1 = t2 · ∇w2 = 0 in {ρ > 0} .

Example 10.4. Riemann invariants for the equations of motion of an ideal fluid. Recalling the equa-
tions, we have

∂ρ

∂t
+

∂

∂x
(ρv) = 0 ,

∂ρv

∂t
+

∂

∂x
(ρv2 + p) = 0 ,

∂ρS

∂t
+

∂

∂x
(ρvS) = 0 ,

where p = p(S, ρ) with
∂p

∂ρ
>0. Introducing the sound speed c :=

√
∂p

∂ρ
, we find that the Jacobian

matrix ⎛⎜⎜⎜⎜⎜⎝
v ρ 0

1
ρ

∂p

∂ρ
v

1
ρ

∂p

∂S

0 0 v

⎞⎟⎟⎟⎟⎟⎠
has eigenvalues and eigenvectors

λ1 = v − c with t1 = (ρ,−c, 0)T ,

λ2 = v with t2 =
(
∂p

∂S
, 0,−∂p

∂ρ

)T

,

λ3 = v + c with t3 = (ρ, c, 0)T .

Here n=3, thus we are looking for 3×2=6 Riemann invariants. They are given by

{S, v + h} , {v, p} , {S, v − h} ,
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where h=h(ρ, S) is the enthalpy, which satisfies
∂h

∂ρ
=
c

ρ
. For example, the Riemann invariants along

the 3-integral curve must satisfy

t3 · ∇w = ρ
∂w

∂ρ
+ c

∂w

∂v
= 0 .

Clearly w=S (as an independent variable) satisfies this equation, as does w=v−h:

ρ
∂w

∂ρ
+ c

∂w

∂v
= −ρ∂h

∂ρ
+ c = 0 .

10.2 Rarefaction waves

Consider the following definition.

Definition 10.5. Fix 1 � k � n. Let u be a C1 solution of equation (9.1) in a domain D ⊆ Q and
suppose that all k-Riemann invariants are constant in D, i.e. wi

(
u(x, t)

)
=ci for i=1, · · · , n−1 and

for all (x, t)∈D. Then u is called a k-rarefaction (wave).

In this definition a smooth solution u is a k-rarefaction if the values u(x, t) belong to the intersection
of the (n−1) surfaces wi(u) = ci. Because the gradients ∇wi are linearly independent, the n−1
equations

wi(u1, · · · , un) = ci , 1 � i � n− 1 ,

in the n unknowns define a curve in the set N , see Figure 10.2

u2

u3

u1

w1 = c1
∇w2

∇w1

w2 = c2

Figure 10.2. Intersection of Riemann invariants w1 and w2

The intersection curve must be the k-integral curve. Indeed, if u(θ) denotes a local parametrization,
then

d
dθ
wi

(
u(θ)

)
= ∇wi · u′(θ) = 0 , for all 1 � i � n− 1 .
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Hence u′(θ) must be orthogonal to the n−1 dimensional space spanned by the ∇wi

(
u(θ)

)
. Con-

sequently u′(θ) ∈ span{tk

(
u(θ)

)} which proves the assertion. In the following proposition, the
operation

d
dk

:=
∂

∂t
+ λk

∂

∂x

denotes differentiation in the k-characteristic direction.

Proposition 10.6. A function u is a C1 solution of (9.1) in D⊆Q if and only if �T
k

du
dk

=0 in D for

all 1�k�n.

Proof. Clearly, u is a C1 solution of (9.1) in D if and only if

∂u
∂t

+Df(u)
∂u
∂x

= 0 in D .

Multiplying the equation on the left by �T
k yields

�T
k

∂u
∂t

+ �T
kDf(u)

∂u
∂x

= �T
k

{
∂u
∂t

+ λk
∂u
∂x

}
= �T

k

du
dk

. (10.3)

We now conclude the assertion: if u solves (9.1) in D, then (10.3) must be zero in D for all 1�k�n.
On the other hand, if (10.3) is zero in D for 1�k�n, then

∂u
∂t

+Df(u)
∂u
∂x

⊥ span{�k : 1 � k � n} = IRn ,

which shows that u is a classical solution in D.

Rarefaction waves have the following characteristic property.

Proposition 10.7. Let u be a k-rarefaction inD⊆Q. Then the k-characteristics (i.e. curves satisfying
ẋ=λk

(
u(x, t)

)
) are straight lines along which u is constant.

Proof. By the previous result we know that

�T
k

du
dk

= 0 in D .

By definition, the n−1 Riemann invariants {w1, · · · , wn−1} are constant in D. This implies

0 =
dwi

dk
= ∇wi · du

dk
= 0 in D ,

for 1 � i � n−1. Since the ∇wi are linearly independent, ∇wi · tk = 0 for all 1 � i � n−1 and
�k · tk �=0, we see that

span{∇w1, · · · ,∇wn−1, �k} = IRn ,

which implies

du
dk

= 0 in D .

Thus u is constant in the k-characteristic direction and the k-characteristic curves are straight lines.
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Knowing that a k-rarefaction in D satisfies{
u
(
x(t), t

)
= c (constant) ,

ẋ(t) = λk(c) ,

for
(
x(t), t

)∈D, we now consider a particular class, called centered k-rarefactions.

Definition 10.8. A centered k-rarefaction, centered at (x0, t0)∈Q, is a k-rarefaction depending only
on (x−x0)/(t−t0).
We present a first existence result, related to centered k-rarefactions. For this we need that the kth-
characteristic field is genuinely nonlinear, see (9.10). Throughout we assume that tk is normalized so
that

∇λk(u) · tk(u) = 1 for u ∈ N . (10.4)

We have

Theorem 10.9. Let (10.4) hold and let ul be any point inN . Then there exists a one-parameter family
of states u=u(ε), with 0<ε<a (small) and u(0)=ul, which can be connected on the right to ul by
a centered k-rarefaction.

Proof. Since all the (n−1) k-Riemann invariants are constant for the values of the k-rarefaction, we
must look for

wi(u) = wi(ul) for i = 1, · · · , n− 1 .

We introduce a parameter ε by setting

λk(u) = λk(ul) + ε ,

and we consider the map F :N × IR→ IRn given by

F(u, ε) =
(
w1(u) − w1(ul), · · · , wn−1(u) − wn−1(ul), λk(u) − λk(ul) − ε

)
.

For u∈N , ε∈ IR we want to solve

F(u, ε) = 0 .

Since the n columns [∇w1, · · · ,∇wn−1,∇λk

]
in the Jacobian matrix are linearly independent, this is possible for |ε| small, say |ε| < a. This is a
consequence of the implicit function theorem (e.g. see RUDIN [64]). It gives a differentiable curve
u=u(ε; ul), satisfying u(0)=ul.
Any k-Riemann invariant w is constant along this curve: hence

dw
dε

= ∇w · du
dε

= 0 .
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Thus

du
dε

⊥ span{∇w1, · · · ,∇wn−1}

implying

du
dε

= α(ε)tk

(
u(ε)

)
.

But

1 =
dλk

dε
= ∇λk · du

dε
= α(ε)∇λk · tk = α(ε) .

Thus

du
dε

= tk

(
u(ε)

)
for |ε| < a ,

and moreover

λk

(
u(ε)

)
= λk(ul) + ε > λk(ul) only if ε > 0 .

Having determined the k-integral curve through ul, with λk varying monotonically along it, we now
define the centered k-rarefaction, centered at (0, 0), by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε =
x

t
− λk(ul) ,

u(x, t) := u(ε) ,

λk(u) =
x

t
,

where λk(ul)t<x<
(
λk(ul)+a

)
t.

u1 x

u = u(ε)

u2 t

ur

ul

x = λk(ul)t x = λk(ur)t

ul ur

Figure 10.3. Centered k-rarefaction with ur such that λk(ul)<λk(ur)<λk(ul)+a

Taking ur∈{u(ε) :0<ε<a} and defining the set

D = {(x, t) ∈ Q : t > 0, λk(ul)t < x < λk(ur)t} ,
we obtain that
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(i) u∈C1(D);

(ii) u is a classical solution of (9.1) in D;

(iii) all k-Riemann invariants are constant for u=u(x, t), with (x, t)∈D,

showing that u defines indeed a k-rarefaction. We verify (ii): for (x, t)∈D we compute

∂u
∂t

+Df(u)
∂u
∂x

= − x

t2
du
dε

+
Df(u)
t

du
dε

=
1
t

(
−x
t
tk +Df(u)tk

)
=

1
t

(
−x
t

+ λk(u)
)

tk = 0 .

This completes the proof of the theorem.

10.3 Shock waves

Having established k-rarefactions in the previous section we now turn to k-shocks.

Definition 10.10. A k-shock, 1�k�n, is a pair of states {ul,ur} for which there exists a real number
s, called the shock speed, such that

f(ul) − f(ur) = s(ul − ur) (10.5)

and

λk−1(ul) < s < λk(ul) , (10.6a)

λk(ur) < s < λk+1(ur) . (10.6b)

Here (10.5) is the Rankine–Hugoniot shock condition and (10.6a), (10.6b) are the Lax entropy condi-
tions. Given any ul∈N , we call the set

{u ∈ N : there exists s ∈ IR such that f(u) − f(ul) = s(u − ul)}

the local Hugoniot locus for the state ul.

Before investigating the Hugoniot locus, we first recall some notation related to the Taylor expansion
in IRn. Let f : IRn→ IRn be smooth (e.g. f ∈C3(IRn)). For any pair u,u0∈ IRn and for 1� i�n we
have

fi(u) = fi(u0) +
n∑

j=1

∂fi

∂uj
(u0)(uj − u0

j )

+
1
2

n∑
j,l=1

∂fi

∂uj∂ul
(u0)(uj − u0

j )(ul − u0
l ) + O(||u − u0||3) . (10.7)
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Using the symmetric Hessian matrix

(
H(fi)

)
jl

=
∂2fi

∂uj∂ul
, (10.8)

one writes (10.7) as

fi(u) = fi(u0) + ∇fi(u0) · (u − u0) +
1
2
(u − u0)TH

(
fi(u0)

)
(u − u0) + O(||u − u0||3) ,

for 1� i�n. Combining all n-components we arrive at the compact notation

f(u) = f(u0) +A(u − u0) +
1
2
D2f0(u − u0, u− u0) + O(||u − u0||3) ,

where A=Df(u0), the Jacobian matrix at u=u0, and

D2f0(ξ, η) =
[
ξTH

(
f1(u0)

)
η, ξTH

(
f2(u0)

)
η, · · · , ξTH

(
fn(u0)

)
η
]T

.

Sometimes we drop the index 0 in this notation.

Next we consider the directional derivative of a vector. Let e∈ IRn. Then we have

∂fi

∂e
= ∇fi · e =

(
eT∇)

fi for i = 1, · · · , n ,

or in compact vector notation

∂f
∂e

=
(
eT∇)

f .

Note that in this notation

∂f
∂f

=
(
fT∇)

f �= 1 . (!)

We are now in a position to express the condition of genuine nonlinearity (10.4) more directly in terms
of the vector function f . We have

Proposition 10.11. For the kth-characteristic field we have the identity

∂λk

∂tk
= ∇λk · tk =

1
�T
k tk

�T
kD

2f(tk, tk) .

Proof. We want to differentiate the equation

Atk = λktk (10.9)

with respect to tk. For this we need to evaluate the term
∂A

∂tk
tk. This is a vector whose components

are given by (
∂A

∂tk
tk

)
i

=
(((

tT
k ∇

)
Df

)
tk

)
i

=
n∑

m=1

n∑
l=1

(((
tk
)
l

∂

∂ul

) ∂fi

∂um

)(
tk
)
m

= tT
kH(fi)tk .
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Thus

∂A

∂tk
tk = D2f(tk, tk) . (10.10)

Differentiating (10.9) now gives

∂A

∂tk
tk +A

∂tk

∂tk
=
∂λk

∂tk
tk + λk

∂tk

∂tk
.

Multiplying on the left by �T
k and using (10.10) gives

�T
kD

2f(tk, tk) =
∂λk

∂tk
�T
k tk ,

which proves the result.

Normalization: If the kth-characteristic field is genuinely nonlinear, then tk is normalized by
(10.4) and, then, �k by �T

k tk =1.

The following theorem relates to the existence of a local Hugoniot locus for a given point ul∈N .

Theorem 10.12. Let ul be any point in N . Then there are n smooth one-parameter families of states
uk =uk(ε), k=1, · · · , n and |ε|<ak, with uk(0)=ul, all of which satisfy condition (10.5).

Proof. To prove this result we write

f(u) − f(ul) =
∫ 1

0

d
dσ

f
(
ul + σ(u − ul)

)
dσ

=
∫ 1

0
Df

(
ul + σ(u − ul)

)
dσ(u− ul)

=: G(u)(u − ul) .

The object is to find {u, s} such that (10.5) is satisfied, or equivalently[G(u) − s
]
(u − ul) = 0 . (10.11)

Since lim
u→ul

G(u)=Df(ul) we have, by continuity, for u sufficiently close to ul, that all eigenvalues

of G are distinct and real:

µ1(u) < µ2(u) < · · · < µn(u) .

Let L1(u),L2(u), · · · ,Ln(u) be the corresponding set of left eigenvectors. Now (10.11) has a so-
lution {u, s}, with u �= ul, if and only if s=µk(u) for some k or if and only if LT

i (u)(u−ul) = 0,
i=1, · · · , n, i �=k, for some k. The last expression represents (n−1) equations in the n unknowns u.
Introducing the (n−1) × n matrix

M(u) :=

⎡⎢⎢⎢⎢⎢⎢⎣
L1(u)

...
Lk is missing

...
Ln(u)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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we consider the map Φ:N⊆ IRn→ IRn−1 defined by (for some k∈{1, · · · , n})

Φ(u) = M(u)(u − ul) . (10.12)

We want to solve Φ(u)=0 in some neighbourhood of ul. Since

(
DΦ(u)

)
ij

=
∂Φi(u)
∂uj

=
∂

∂uj

⎧⎨⎩
n∑

p=1

Mip(u)(up − ulp)

⎫⎬⎭
=

n∑
p=1

∂Mip(u)
∂uj

(up − ulp) +Mij(u) ,

we see that

DΦ(ul) = M(ul) ,

which has rank (n−1). Hence there must exist an (n−1)× (n−1) nonsingular minor and the implicit
function theorem then tells us that (10.12) defines a curve uk = uk(ε) as stated in the theorem. This
proof leads to n curves k=1, · · · , n through the point ul. The curves are all distinct near ul since

u− ul ⊥ span{L1(u), · · · ,Lk missing , · · · ,Ln(u)}

for each k.

As to be expected we have

Proposition 10.13. u̇k(0)=cktk(ul) for some ck �=0.

Proof. Dividing the expression

f
(
uk(ε)

) − f(ul) = µk

(
uk(ε)

)(
uk(ε) − ul

)
by ε and passing to the limit for ε→0, we find

Df(ul)u̇k(0) = λk(ul)u̇k(0) .

The next result is concerned with the parametrization of the Hugoniot locus.

Proposition 10.14. Along the k-shock (i.e. along the curve u = uk), if the kth-characteristic field
is genuinely nonlinear, we can choose a parametrization so that u̇k(0) = tk(0) and ük(0) = ṫk(0).
Moreover s(0)=λk(ul) and ṡ(0)= 1

2 . Here tk(ε) := tk

(
uk(ε)

)
and s(ε) :=s

(
uk(ε)

)
.

Proof. Given any parametrization (as a result of Theorem 10.12), we redefine εwith ε :=ckε, yielding

u̇k(0) = tk(0) . (10.13)

Writing also λk(ε) :=λk

(
uk(ε)

)
we obtain from (10.4) and (10.13)

λ̇k(0) = ∇λk(ul) · u̇k(0) = ∇λk(ul) · tk(ul) = 1 .
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Next consider the expression

Df
(
uk(ε)

)
tk(ε) = λk(ε)tk(ε) .

Differentiating with respect to ε and setting ε=0 gives

D2f(tk, tk) +Df u̇k = tk + λk ṫk . (10.14)

Differentiating the shock condition (10.5) with respect to ε yields

Df u̇k = ṡ(uk − ul) + su̇k (⇒ s(0) = λk(ul))

and again

D2f(u̇k, u̇k) +Df ük = s̈(uk − ul) + 2ṡu̇k + sük .

At ε=0 this becomes

D2f(tk, tk) +Df ük = 2ṡtk + λkük . (10.15)

Substracting (10.14) from (10.15) results in

Df(ük − ṫk) = (1 − 2ṡ)tk + λk(ük − ṫk) ,

or

(Df − λk)(ük − ṫk) = (1 − 2ṡ)tk .

Multiplying on the left by �T
k gives

1 − 2ṡ = 1 ⇒ ṡ(0) =
1
2

and thus

ük(0) − ṫk(0) = c tk(0) for some c ∈ IR . (10.16)

Again we redefine the parametrization

ε = δ − 1
2
cδ2 .

This yields

du
dδ

=
du
dε

dε
dδ

=
du
dε

(1 − cδ) ⇒ du
dδ

∣∣∣∣
δ=0

=
du
dε

∣∣∣∣
ε=0

and

d2u
dδ2

=
d2u
dε2

(1 − cδ)2 − c
du
dε

⇒ d2u
dδ2

∣∣∣∣
δ=0

=
d2u
dε2

∣∣∣∣
ε=0

− c
du
dε

∣∣∣∣
ε=0

.

Hence in terms of δ we obtain from (10.16)

ük(0) − ṫk(0) = 0 .
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We can now conclude

Theorem 10.15. The Lax entropy inequalities (10.6a), (10.6b) hold along the k-shock uk(ε), if and
only if ε<0.

Proof. In the notation of Proposition 10.14 the entropy conditions are

(i) λk−1(0) < s(ε) < λk(0) ,
(ii) λk(ε) < s(ε) < λk+1(ε) .

Let w(ε) := λk(ε)−s(ε). Then w(0) = 0 and w′(0) = 1− 1
2 > 0. Thus if (ii) holds then ε < 0.

Conversely if ε<0, then w(ε)<0 implying λk(ε)<s(ε). Moreover ṡ(0)= 1
2 and λk(0)=s(0) imply

s(ε)<λk(0). Since s(ε)→ λk(0)>λk−1(0) as ε→ 0 we have s(ε)>λk−1(0) for ε small. Finally,
since λk+1(0)>λk(0)=s(0) we also have λk+1(ε)>s(ε) for ε small.

Combining Theorem 10.9 and the results of this section we obtain for any ul∈N the existence of
n composite curves (1�k�n),

Uk =

{
uk,R(ε) for ε � 0 ,
uk,S(ε) for ε � 0 ,

where uk,R is the k-rarefaction curve and uk,S the k-shock curve. These curves are twice continuously
differentiable in ε.

U1
U2

R1

S2

S1

R2

t2(ul)

t1(ul)

Figure 10.4. Example of composite curves (n=2)

In some physical systems, for instance the Euler equations, it happens that one of the characteristic
fields satisfies

∇λk(u) · tk(u) = 0 for all u ∈ N .

Then the kth characteristic field is called linearly degenerate. By definition, λk is now a Riemann-
invariant. It has the following consequence. Consider the initial value problem

du
dε

= tk

(
u(ε)

)
, u(0) = ul .

Version September 15, 2003



116 10 RIEMANN PROBLEM FOR NONLINEAR EQUATIONS: THE THEORY

This problem has a unique solution u(ε)∈N for |ε|<a. Moreover, λk

(
u(ε)

)
=constant=λk(ul) for

all |ε|<a. Now, for |ε|<a, consider the Riemann problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t

+
∂f(u)
∂x

= 0 in Q ,

u(x, 0) =

{
ul x < 0 ,
u(ε) x > 0 .

It’s solution is given by

u(x, t) =

{
ul for x < tλk(ul) ,
u(ε) for x > tλk(ul) .

Indeed, checking the Rankine–Hugoniot conditions gives (with s=λk(ul))

d
dε

{
f
(
u(ε)

) − su(ε)
}

= Df u̇− su̇ = (Df − λkI)tk = (λk

(
u(ε)

) − λk(ul))tk = 0 .

Thus

f
(
u(ε)

)− su(ε) = f(ul) − sul

and consequently

f
(
u(ε)

) − f(ul) = s
(
u(ε) − ul

)
for all |ε| < a , (10.17)

showing that all points u(ε) can be connected to ul by a shock of the same speed s=λk(ul). Such a
solution (or shock) is called a contact-discontinuity.

We have the following result

Theorem 10.16. If two nearby states ul and ur have the same k-Riemann invariants with respect to
a linearly degenerate field, then they are connected to each other by a contact discontinuity of speed
s=λk(ul)=λk(ur).

Proof. Because wi(ul)=wi(ur) for i=1, · · · , n−1, it follows that ul and ur belong to the same k-
integral curve, along which λk is constant (and therefore the curve is also a kth-characteristic curve),
and along which (10.17) holds. Thus ul and ur can be connected by a contact-discontinuity.

10.4 Solvability

We are now in a position to give the main result of this section. Consider the Riemann problem

(R)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t

+
∂f (u)
∂x

= 0 in Q ,

u(x, 0) =

{
ul x < 0 ,
ur x > 0 .
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where f :N⊂ IRn→ IRn is smooth and strictly hyperbolic, such that either ∇λk ·tk =1 or ∇λk ·tk =0
in N for 1 � k � n. Then combining the composite curves Uk(ε), provided the kth-characteristic
fields are genuinely nonlinear, and k-integral curves, for which the corresponding characteristic fields
are linearly degenerate, we obtain a unique solution of Problem R provided ||ul−ur|| is small. This
solution consists of at most (n+1) constant states, separated by shocks, centered rarefactions or
contact-discontinuities. The proof of this fundamental existence and uniqueness result combines the
theory developed in this chapter. Below we give the main idea.

For each k=1, 2, · · · , n consider the family of transformations

Tk
εk

: N → IRn , |εk| < a ,

where Tk
εk

(ul), with ul ∈ N , is the admissible right state for ul (admissible shock, rarefaction or
contact-discontinuity). Thus Tk

εk
(ul) is the composite curve Uk(εk) if the kth-field is genuinely

nonlinear, or the kth-characteristic curve if the kth-field is linearly degenerate. Let C denote the
hypercube

C = {(ε1, · · · , εn) ∈ IRn : |εi| < a for i = 1, 2, · · · , n} .
Next consider the composite transformation T :C→ IRn given by

T(ε) = Tn
εn

Tn−1
εn−1

· · ·T1
ε1

(ul) (ul ∈ N fixed) ,

where ε=(ε1, ε2, · · · , εn). We want to show that there exists a unique ε∗∈C such that

T(ε∗) = ur ∈ N ,

when ul and ur are sufficiently close. To achieve this we introduce F :C→ IRn given by

F(ε) = T(ε) − ul .

Then F(0)=0, and since

Tk
εk

(u) = u + εktk(u) + O(ε2k) ,

we have

F(ε) =
n∑

k=1

εktk + O(||ε||2) .

Hence F maps a neighbourhood of ε=0 one-to-one onto a neighbourhood of u = 0. Thus if ||ur−ul||
is sufficiently small, there exists a unique ε∗∈C such that

F(ε∗) = ur − ul .

In other words,

T(ε∗) = ur ,

which proves the assertion.

Remark 10.17. The results obtained in this chapter are local results, because we used (in essence)
only smoothness of the flux f and no structural properties. In many applications, however, global
solutions exist (see for instance example 9.1) without the smallness restriction on ||ur−ul||.
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11 Entropy and viscous profiles

In this chapter we introduce an entropy for the hyperbolic system as an alternative concept to provide
uniqueness. In particular we demonstrate equivalence between the Lax entropy (or shock) conditions
(10.6) and an entropy inequality across the shock. Further we consider travelling waves of the viscous
perturbation (i.e. viscous profiles) and discuss their existence in terms of the Lax inequalities.

11.1 Entropy inequality

In Chapter 7 we presented the equations of gas dynamics in terms of density, velocity and entropy.
Following SMOLLER [67], we now take internal energy as one of the dependent variables and we use
Lagrangian coordinates. Then there results

∂v

∂t
− ∂u

∂x
= 0 (conservation of mass) ;

∂u

∂t
+
∂p

∂x
= 0 (conservation of momentum) ;

∂

∂t
(e+

1
2
u2) +

∂

∂x
(pu) = 0 (conservation of energy) ,

where v= ρ−1 is the specific volume, ρ=density, u=velocity, p=pressure and e= internal energy.
Using these equations and the second law of thermodynamics, one recovers for the entropy S the
additional conservation equation

∂S

∂t
= 0 . (11.1)

Note that the derivation of (11.1) is purely formal: it applies only when considering smooth solutions
in the absence of shocks. When shocks are present, we need to interpret (11.1) in a weak sence and
find

∂S

∂t
� 0 (or

∫
Q
S
∂ϕ

∂t
� 0 for all ϕ ∈ C∞

0 (Q) , ϕ � 0) , (11.2)

implying that the entropy of a fluid particle increases when going through a shock. This entropy
inequality plays a crucial role when selecting the physically correct shock solution.
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This concept has been generalized in the mathematics literature. Mathematicians, however, like to
see quantities stabilize as time increases. Therefore, considering −S, we ask ourselves the question:
when does a system of conservation laws

∂u
∂t

+
∂f (u)
∂x

= 0 in Q (11.3)

imply the existence of an additional conservation law

∂U

∂t
+
∂F

∂x
= 0 (or � weakly) in Q , (11.4)

where U =U(u1, · · · , un) and F =F (u1, · · · , un)? If it does then we call U an entropy and F the
corresponding entropy flux for (11.3), see also LAX [45] or SMOLLER [67]. For n= 1 (scalar case)
this is precisely the Kruzkov formulation given in Section 6.3. Then there are infinitely many entropy
functions, one for each k ∈ IR. To answer this question for n� 2 we carry out the differentiation in
(11.4)

(∇uU)T
∂u
∂t

+ (∇uF )T
∂u
∂x

= 0

and we multiply (11.3) on the left by ∇uU giving

(∇uU)T
∂u
∂t

+ (∇uU)TDf
∂u
∂x

= 0 .

Thus (11.3) has an entropy U , if and only if we can find a pair (U,F ) satisfying

(∇uU)TDf = (∇uF )T . (11.5)

This is a system of n partial differential equations for the two unknowns U and F . Thus if n>2, this
system is overdetermined and usually has no solutions. However, there are some important cases for
which a nontrivial solution exists.

Example 11.1. Suppose f is a gradient, that is there exists a function φ(u) such that f(u)=∇uφ(u).
We set

U(u) =
1
2
||u||2 and F (u) = u · f(u) − φ(u) .

Then

∂F

∂x
=

(
∂u
∂x

· f(u)
)

+
(
u · ∂f (u)

∂x

)
−

(
∇uφ · ∂u

∂x

)
=

(
u · ∂f(u)

∂x

)
= −

(
u · ∂u

∂t

)
= −∂U

∂t
.

Example 11.2. Let n=2 and consider the antigradient system⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
+

∂

∂x
φv(u, v) = 0 ,

∂v

∂t
+

∂

∂x
φu(u, v) = 0 .
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Then U=φ and F =φuφv. Indeed,

∂U

∂t
= φu

∂u

∂t
+ φv

∂v

∂t
= −φu

∂φv

∂x
− φv

∂φu

∂x
= − ∂

∂x
(φuφv) .

Note that systems of the form (compare the p-system)⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u

∂t
+
∂f(v)
∂x

= 0

∂v

∂t
+
∂g(u)
∂x

= 0

are special cases of antigradient systems with

φ(u, v) =
∫ v

f(s)ds+
∫ u

g(s)ds .

The role of the entropy conditions (10.6) is to obtain the physically relevant solution from all the
others. This can also be done by considering the method of vanishing viscosity as in Chapter 6. In
this method we perturb equations (11.3) and study

∂u
∂t

+
∂f (u)
∂x

= ε
∂2u
∂x2

in Q , (11.6)

where ε>0.
Now suppose (11.3) has an entropy U and entropy flux F satisfying (11.5). Further suppose that U is
convex: i.e. the Hessian H(U) is positive definite. Then multiplying (11.6) on the left by ∇uU gives

∂U

∂t
+
∂F

∂x
= ε(∇uU)T

∂2u
∂x2

= ε

((∇uU
)T ∂u
∂x

)
x

− ε

(
∂u
∂x

)T

H(U)
∂u
∂x

� εUxx .

We multiply this inequality by ϕ∈C∞
0 (Q), ϕ�0 and integrate the result over Q to obtain∫

Q
{Uϕt + Fϕx} � −ε

∫
Q
Uϕxx .

Next we assume that ||u||, and thus U(u), is uniformly bounded with respect to ε. Then, as ε→0,

∂U

∂t
+
∂F

∂x
� 0 (11.7)

in sense of distributions. Thus we have shown

Theorem 11.3. Suppose there exist an entropy pair (U,F ) related to the system (11.3). Let u be
a weak solution of (11.3) which is the weak limit of uniformly bounded solutions of the viscosity
equation (11.6). If U is convex, then u satisfies (11.7) in sense of distributions.

Note that the inequality in (11.7) appears as a result of the regularization, as it did in the scalar case
in Section 6. Similarly we have
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Corollary 11.4. Suppose Theorem 11.3 holds. If u is a piecewise smooth solution, then accross each
discontinuity u satisfies

s
[
U(ur) − U(ul)

]
� F (ur) − F (ul) , (11.8)

where s is the speed of the discontinuity, and ur and ul are, respectively, the right and left state at the
discontinuity.

The following theorem relates the Lax entropy inequalities (10.6) and inequality (11.8).

Theorem 11.5. Suppose system (11.3) is hyperbolic and genuinely nonlinear in some neighbourhood
N ⊂ IRn. Further, suppose that (11.3) admits an entropy pair (U,F ) where U is strictly convex.
Finally, let u be a piecewise smooth solution of (11.3) which is the weak limit of uniformly bounded
solutions of (11.6). Accross any k-shock in N we have: the Lax entropy inequalities (10.6) hold if and
only if (11.8) holds.

Proof. We use Theorem 10.15 and set u= u(ε) = uk(ε). Let ul ∈N . The Lax entropy inequalities
hold, with u(ε) as right state, if and only if ε<0. For ε<ε<0 (|ε| sufficiently small), set

I(ε) = s(ε)
[
U(ε) − Ul

]− [
F (ε) − Fl

]
, (11.9)

where U(ε), F (ε)=U(u(ε)), F (u(ε)) and Ul, Fl =U(ul), F (ul). Further, s(ε) denotes the shock
speed of the discontinuity ul and ur = u(ε). To prove the theorem we need to show I(ε)> 0 if and
only if ε<0. Differentiating (11.9) gives

İ = ṡ
[
U − Ul

]− s
(∇uU

)T u̇− (∇uF
)T u̇ ,

and using (11.5)

İ = ṡ
[
U − Ul

]
+ s

(∇uU
)T u̇ − (∇uU

)T
Df u̇ .

Since s(u−ul)= f (u)−f (ul), we have

Df u̇ = ṡ(u − ul) + su̇ .

Consequently,

İ = ṡ
[
U − Ul

]− ṡ
(∇uU

)T (u − ul) ,

implying İ(0) = 0. Hence we need to determine the second derivative at ε= 0. Following SMOLLER

[67] and using Proposition 10.14 we find Ï(0)=0 as well. Differentiating again gives

...
I (0) = −ṡ(u̇)TH(U)u̇

∣∣∣∣
ε=0

= −1
2
(tk)TH(U)tk

∣∣∣∣
ul

< 0 (11.10)

by the strict convexity of U . Hence I(ε)>0 if and only if ε<0, for |ε| sufficiently small.

So for weak shocks (i.e. ||ul−ur|| sufficiently small) we have established equivlence between the
Lax conditions (10.6) and the entropy formulation (11.7), (11.8), provided to hyperbolic system is
genuinely nonlinear.
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Remark 11.6. If we replace the viscosity equation (11.6) by

∂u
∂t

+
∂f(u)
∂x

= εA
∂2u
∂x2

, (11.11)

where A is an n × n positive semidefinite matrix with constant coefficients, and if an entropy pair
(U,F ) exists (i.e. ∇uUDf =∇uF ), then the conclusion of Theorem 11.5 remains valid, provided

H(U)A � cI , (11.12)

where c is a positive constant.

11.2 Viscous profiles

As in the scalar case, travelling waves can be used to distinguish the physically correct shock from all
the others. When they exist, we say that the shock has a viscous profile or structure.

Again we consider system (11.3) for which we assume

λ1(u) < λ2(u) < · · · < λn(u) .

Let (ul, ur, s) denote a k-shock satisfying the Lax inequalities. Then

u(x, t) =

{
ul as x < st ,

ur as x > st ,
(11.13)

where

f(ul) − f(ur) = s(ul − ur) (11.14)

and

λ1(ul) < · · · < λk−1(ul) <s < λk(ul) < · · · < λn(ul) , (11.15a)

λ1(ur) < · · · < λk(ur) <s < λk+1(ur) < · · · < λn(ur) . (11.15b)

Has this k-shock a viscous structure? That is, given a certain parabolic regularization of (11.3), is
there a travelling wave that collapses onto the shock as the small parameter vanishes? Let us consider
the simplest regularization possible. Adding a linear viscosity term to (11.3) gives

∂u
∂t

+
∂f (u)
∂x

= ε
∂2u
∂x2

in Q . (11.16)

Considering the travelling wave

u(x, t) = u(η) with η =
x− st

ε
,

we find that u should satisfy the system of ordinary differential equations

−su′ +
(
f(u)

)′ = u′′ . (11.17)
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Here the primes denote differentiation with respect to η. This equation can be integrated to give

u′ = f(u) − su + C , (11.18)

where C is the constant of integration. If u(η) is to converge towards the k-shock (11.13) as ε↓0, we
need to consider (11.18) for all η∈ IR, subject to the boundary condition

u(−∞) = ul and u(+∞) = ur .

Hence ul and ur must be rest points for (11.18). This gives

u′ = f(u) − f(ul) − s(u− ul) in IR , (11.19)

with s satisfying the Rankine-Hugoniot conditions (11.15). Thus the speed of the travelling wave (if
it exists) and the shock speed coincide.

Following COURANT & FRIEDRICHS [16], HOPF [37] and GELFAND [26], we call the shock (11.13)
admissible if it has a viscous structure or profile: i.e. if (11.19) has a solution in IRn connecting the
rest points ul (as η→−∞) and ur (as η→+∞). We discuss below that if the Lax conditions (11.15)
are satisfied, the k-shock is admissible. For this purpose we investigate the nature of the dynamical
system (11.19) at u=ul and u=ur. Linearization gives the eigenvalues

ek(ul) = λk(ul) − s ,

ek(ur) = λk(ur) − s .

Thus if (11.15) is satisfied, then

e1(ul) < · · · < ek−1(ul) < 0 < ek(ul) < · · · < ek(ul) , (11.20a)

e1(ur) < · · · < ek(ur) < 0 < ek+1(ur) < · · · < ek(ur) . (11.20b)

Since the number of positive (and different) eigenvalues at a rest point gives the dimension of the
unstable manifold, and the number of negative eigenvalues the dimension of the stable manifold we
have:

dim ( unstable manifold at ul ) + dim ( stable manifold at ur ) = n− k + 1 + k = n+ 1 > n

i.e. the sum exceeds the dimension of the space in which (11.19) is solved. Intuitively one expects
that this guarantees the existence of a connecting orbit flowing from ul to ur, and that this connection
is stable under small perturbations of ul, ur and of the viscosity matrix (chosen here as the identity).
Indeed, using geometrical arguments and the Conley index, SMOLLER [67] proved this rigorously for
ul and ur sufficiently close.

We now consider the system

∂u
∂t

+
∂f (u)
∂x

= ε
∂

∂x

(
D(u)

∂u
∂x

)
in Q , (11.21)

where D(u) is the viscosity matrix modelling those physical effects that are disregarded in the con-
servation laws. Putting again u=u(η), we obtain as in (11.19){

D(u)u′ = f(u) − f(ul) − s(u − ul) in IR ,

u(−∞) = ul, u(+∞) = ur ,
(11.22)
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when the wave speed s satisfies (11.14). If this system has a solution, then the shock {ul, ur, s}
is admissible. Such admissible shocks, however, need not satisfy the Lax-conditions. Examples,
references and illuminating discussions are given in ISAACSON ET AL. [39]. In particular transitional
shocks may occur satisfying

λk(ul) < s < λk+1(ul) , (11.23a)

λk(ur) < s < λk+1(ur) . (11.23b)

For n=2 and D such that det(D)> 0, this means that the travelling wave is represented by an orbit
in IR2 connecting two saddles. Such orbits are structurally unstable and may disappear under small
perturbations of ul and ur, and of D. In other words, keeping ul fixed and changing the viscosity
matrix D, a connecting orbit can only be found (if any at all) by adjusting ur. Consequently, the
values of u at the shock depend on the local structure implied by the parabolic regularization. This
behaviour is studied in detail by BRUINING & VAN DUIJN [12] for a specific problem related to oil
recovery by steamdrive. This paper is included as Chapter 13. First we are going to discuss some
elements of multi-phase flow in porous media.
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12 Multi-phase flow in porous media

Oil occurs in the pores of reservoir rock. When the rock is permeable, the oil may move through the
pores. For example the oil could be driven out of a reservoir by injecting water. We have a two-phase
system if only water and oil occupy the pores. In addition, if gas is present, we have a three-phase
system. The following concepts are important to understand the physics of multi-phase flow in porous
media. For further details the reader is referred to, for example, BEAR [10], HELMIG [35] and AZIZ &
SETTARI [8].

(i) Porosity (Φ) [m3
void/m3

rock] := fraction of ’voids’ in the porous rock. Porosities range typically
between 5-35%.

(ii) Saturation (S) [m3
fluid/m3

void] := fraction of the pore filled with a particular fluid.

(iii) Connate water saturation (Swc) := maximum water saturation capillarily trapped. A typical
porous medium has a connate water saturation Swc = 0.2 and an oil saturation So = 0.8.
Application of a pressure gradient only causes the oil to flow. The water is trapped.

(iv) Residual oil saturation (Sor) := maximum oil saturation capillarily trapped.

(v) Residual gas saturation (Sgr) := maximum gas saturation capillarily trapped.

(vi) Capillary pressure (Pc) [Pa] := average pressure difference between the fluid phases due to
curved interfaces between them.

(vii) Darcy’s law : fluids in porous media are driven by pressure gradients (gradP ) and by gravi-
tational forces. The latter are disregarded here for the sake of simplicity. The flow is given in
terms of the volume flux or specific discharge q [m3

fluid/m2
rocks]. Analogous to laminar flow

in interconnected tubes we have for one-phase flow

q = −k
µ

gradP , (12.1)

where µ [Pa s] denotes the fluid viscosity and k [m2] the rock permeability. Note that k is
constant for homogeneous and isotropic rock.
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12.1 Two-phase flow

Let water (saturation Sw∈ [Swc, 1−Sor]) and oil (saturation So∈ [Sor, 1−Swc]) occupy the pores of a
homogeneous and isotropic porous medium. Then

Sw + So = 1 . (12.2)

A modification of (12.1) is used in two-phase flow. If water flows through the medium with water and
oil present in the pores, we have for the water discharge

qw = − kw

µw
k gradP . (12.3a)

Here kw =kw(Sw) is called the relative permeability of water. Similarly,

qo = − ko

µo
k gradP , (12.3b)

where ko =ko(So) is the relative permeability of oil.

There is little theoretical evidence for expressions (12.3). Under restrictive conditions, MIKELIC &
PAOLI [52] were able to obtain analytical expressions using homogenisation techniques. In general, the
relative permeabilities are obtained from experiments. They satisfy the following structural properties:

krw : [Swc, 1−Sor] → [0, 1], such that krw(Swc) = 0, kw(Sw) > 0 and strictly increasing
for Swc < Sw < 1 − Sor ,

and we expect kw(1−Sor)=1, reflecting one-phase flow;

kro : [Sor, 1 − Swc] → [0, 1], such that kro(Sor) = 0, ko(So) > 0 and strictly increasing
for Sor < So < 1 − Swc ,

and again we expect ko(1−Swc)=1.

However, there is a difference related to the wetting properties of the medium. When a porous medium
is water-wet, water at low saturation tends to withdraw in the corners of the pores. The result is a slight
reduction in the relative oil permeability: ko(1−Swc)=k′′<1. Oil at low saturation forms bubbles in
the middle of the pores. The result is a more significant reduction in the relative water permeability:
kw(1−Sor) = k′ with k′ < k′′. Summarizing we expect the relative permeabilities to behave as in
Figure 12.1.
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0

k′

1 0

k′′
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kw ko

Swc 1 − Sor

Sw
Sor 1 − Swc

So

Figure 12.1. Relative permeabilities

For convenience we scale the saturations and set

Swd =
Sw − Swc

1 − Swc − Sor
(12.4a)

and

Sod =
So − Sor

1 − Swc − Sor
. (12.4b)

In the discussion below we assume that they have the same saturation dependence. In petroleum
engineering terms we assume that they are of Corey-type, with

kw = k′S2
wd , ko = k′′S2

od , (12.4c)

where kk′ is the permeability of water at residual oil saturation and kk′′ the permeability of oil at
connate water saturation. Note that these relative permeabilities are not entirely consistent with the
physical arguments presented above.

The conservation equation for a phase is obtained from its mass balance. As in open space we have
for an arbitrary volume V , enclosed by the surface S,

d
dt

∫
V
ρ′αdV +

∮
S
ρ′αq′

α · n dS = 0 . (12.5)

The density ρ′α of the fluid phase (α∈{o,w}) is expressed in terms of the mass of fluid per unit rock
volume. In the same way q′ expresses the volume flux in terms of volume of fluid per unit cross-
section of pores available to fluids of phase α.

It is more convenient to express the mass balance in terms of the fluid density ρα and the specific
discharge qα They are related to ρ′α and q′

α by

ρ′α = ρΦSα (12.6a)

and

q′
α =

qα

ΦSα
. (12.6b)
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Hence we obtain for the mass balance equation in the porous medium

d
dt

∫
V

ΦSαρα dV +
∮

S
ραqα · n dS = 0 . (12.7)

When the variables appearing in (12.7) are sufficiently smooth we can apply the divergence theorem.
This gives the mass balance equation in differential form

∂

∂t
(ΦSαρα) + div (ραqα) = 0 . (12.8)

If in addition the fluid phases are incompressible and the porosity is constant, we find

Φ
∂Sα

∂t
+ div qα = 0 . (12.9)

In the discussion below we restrict ourselves to one dimensional in a horizontal layer of porous rock.
Let us assume that the layer has constant (unit) thickness and that the rock is homogeneous and
isotropic. Then qα = qαex, where ex is the unit vector in the horizontal flow direction. As a result,
equation (12.9) reduces to

Φ
∂Sα

∂t
+
∂qα
∂x

= 0 . (12.10)

Summing these equations for α=w, o and using (12.2), gives for q :=qw+qo

∂q

∂x
= 0, implying q = q(t) only.

If fluid (water or a mixture of water and oil) is injected from the left at the constant rate qinj > 0, we
find

qw + qo = qinj , (12.11)

throughout the flow domain and for all t.

Next we use Darcy’s law (12.3) to express qw and qo in terms of Sw. Here the capillary pressure
enters. Since only two phases are involved we have

Pc = Po − Pw (12.12)

as the averaged pressure difference between the phases in a small control volume. In petroleum
engineering it is usually described by the Leverett model, LEVERETT [48], which gives

Pc = Pc(Sw) = σ

√
Φ
k
J(Sw) , (12.13)

where σ denotes the interfacial tension between the phases in the pores and J the Leverett function.
Disregarding hysteretic effects, experiments show that⎧⎪⎨⎪⎩

J : (Swc, 1 − Sor] → [0,∞)
with

J strictly decreasing and J(Swc−) = +∞ .

(12.14)

Version September 15, 2003



12.1. TWO-PHASE FLOW 131

Using (12.12) and (12.13) we write

qo = − ko

µo
k
∂Po

∂x
= − ko

µo
k
∂Pc

∂x
− ko

µo
k
∂Pw

∂x

= − ko

µo
k
∂Pc

∂x
+
ko

µo

µw

kw
qw .

Substitution into (12.11) gives

qw

(
1 +

ko

µo

µw

kw

)
= qinj +

ko

µo
k
∂Pc

∂x

or

qw =

kw

µw

kw

µw
+
ko

µo

qinj +

kw

µw

ko

µo

kw

µw
+
ko

µo

k
∂Pc

∂x
.

Hence, using (12.10) for the water phase, we find for Sw the nonlinear convection-diffusion equation

Φ
∂Sw

∂t
+

∂

∂x

⎧⎪⎪⎨⎪⎪⎩
kw

µw

kw

µw
+
ko

µo

qinj +

kw

µw

ko

µo

kw

µw
+
ko

µo

k
∂Pc

∂x

⎫⎪⎪⎬⎪⎪⎭ = 0 .

To put this equation in dimensionless form we introduce a reference length L, definition (12.4a) –
which we denote again by Sw – and expressions (12.4c). Setting

x :=
x

L
,

t :=
qinj

LΦ(1 − Swc − Sor)
t ,

M :=
µo

µw

k′

k′′
(viscosity ratio) , (12.15a)

Nc :=
k′′σ

√
kΦ

qinj µoL
(capillary number) , (12.15b)

yields the equation

∂Sw

∂t
+

∂

∂x

{
Fw(Sw) −NcD(Sw)

∂Sw

∂x

}
= 0 , (12.16)

where

Fw(Sw) =
MS2

w

S2
o +MS2

w

=
MS2

w

(1 − Sw)2 +MS2
w

is called the fractional flow function and where

D(Sw) = −Fw(Sw)(1 − Sw)2
dJ
dSw
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denotes the capillary induced diffusion. The Leverett function is expressed here in terms of the scaled
water saturation. In petroluem engineering this equation is often considered in the limit of vanishing
capillary forces (i.e. Nc ↓0), which yields the Buckley–Leverett equation

∂Sw

∂t
+
∂Fw(Sw)

∂x
= 0 . (12.17)

One easily verifies

F ′
w(Sw) > 0 for 0 < Sw < 1 , F ′

w(0) = F ′
w(1) = 0 ;

F ′′
w(Sw)

{
> 0 for 0 < Sw < S̃ ,

< 0 for S̃ < Sw < 1 ,
where S̃ ∈ (0, 1) depends on M ;

F ′
w(Sw) =

Fw(Sw)
Sw

⇐⇒ Sw =

√
1

1 +M
.

Hence the fractional flow function satisfies all the properties required in Section 6. Consequently, the
solutions of the Riemann problems considered there are directly applicable to the Buckley–Leverett
equation (12.17).

12.2 Some remarks on degenerate diffusion

The diffusivity in (12.16) depends on the water saturation and satisfies⎧⎨⎩D(Sw) > 0 for 0 < Sw < 1 ,

D(0) = D(1) = 0 ,
(12.18a)

provided J ′<0 on (0, 1] and −S2
w

dJ(Sw)
dSw

↓ 0 as Sw ↓0. In fact, since kw and ko are given by (12.4c),

we have

D(Sw) = O(
(1 − Sw)2

)
as Sw ↑ 1 (12.18b)

and let us suppose that

D(Sw) = O(
Sp

w

)
(p > 0) as Sw ↓ 0 . (12.18c)

Equations of the form (12.16), with D satisfying (12.18), are called degenerate parabolic. The degen-
eration occurs at Sw = 0 and Sw = 1 where the diffusivity vanishes. Such equations received much
attention in the mathematics literature over the past decades. The first papers go back as early as the
1950’s, see for instance OLEINIK ET AL. [56], and were mainly concerned with the so-called porous
media equation: ⎧⎪⎨⎪⎩

∂u

∂t
=

∂2

∂x2
(um) (m > 1) ,

u � 0 .

(12.19)

This equation describes the flow of a gas (u denotes density) in a porous medium; details are given
in MUSKAT [55]. The diffusivity in (12.19), i.e. D(u) =mum−1, vanishes as u ↓ 0. This property
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implies the existence of interfaces or free boundaries in the x− t plane, separating the regions where
u>0 and where u=0. The following explicit solution, found independently by BARENBLATT [9] and
PATTLE [58], shows this behaviour. Consider (12.19) for x∈ IR and t>0, subject to

u(·, 0) = Mδ(·) (M > 0) on IR ,

where δ denotes the Dirac distribution at the origin. The unique solution is given by

u(x, t) = t−α

{[
A−Bx2t−2α

]
+

} 1
m−1

, (12.20)

where [·]+ =max{·, 0}, α=
1

m+ 1
, B=

m− 1
2m(m+ 1)

and where A is a positive constant depending

on m and M . Setting

r(t) :=

√
A

B
t

1
m+1 for t � 0 ,

we observe that the curves {
(x, t) : t � 0, x = ±r(t)}

form the boundaries of the expanding support of u such that u(x, t)>0 for |x|<r(t), while u(x, t)=0
for all |x| � r(t). Thus the material, initially concentrated at x = 0, spreads with finite speed of
propagation in space, see Figure 12.2.

(a) (b)

u(x, t1)

x x

u(x, t2)

00

t

u = 0 u = 0

u > 0

Figure 12.2. Sketch of the Barenblatt–Pattle solution: (a) profiles for 0< t1 < t2; (b) free boundaries in the
x− t plane

The free boundaries occur for any m> 1. When m= 1, equation (12.19) reduces to the linear heat
equation. Then

u(x, t) =
M√
4πt

exp
{
−x

2

4t

}
,

which implies that u(·, t) for any t>0. Now the material spreads with infinite speed of propagation.
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Remark 12.1. The Barenblatt–Pattle solution (12.20) is obtained by the same method as used in

section 2 of Chapter 1. One sets u(x, t)= t−αf(η) with η=xt−β , and requires
∫ +∞

−∞
u(x, t)dx=M .

This gives α=β. Substituting the self-similar form into (12.19) implies α=
1

1 +m
and results in an

ordinary differential equation for f .

For arbitrary non-negative initial data with bounded support, a complete theory has been developed
for equation (12.19). This involves optimal regularity results, properties and smoothness of the free
boundaries and the large time behaviour – stabilization – of solutions. Much of these results have
been generalized to higher space dimensions (n> 1) and to more general nonlinearities. A survey is
given by ARONSON [4].

Next we return to the water-oil case. Suppose no fluid is injected from the left into the horizontal
column (i.e. qinj = 0) and that only redistribution of the fluids due to capillary forces is considered.
Slightly redefining Nc and absorbing it in the dimensionless time, gives for Sw the equation

∂Sw

∂t
=

∂

∂x

(
D(Sw)

∂Sw

∂x

)
, (12.21)

with D satisfying (12.18a). Solving this equation for x∈ IR and t>0, subject to the initial distribution

Sw(·, 0) = Sin(x) on IR ,

where Sin distinguishes the regions

Sin(x) =

⎧⎪⎨⎪⎩
1 as −∞ < x � a (water region)

∈ (0, 1) as a < x < b (both fluids present)

0 as b � x <∞ (oil region) ,

we expect two free boundaries to arise. One starting at (x, t) = (a, 0) between the regions where
Sw =1 and Sw<1, and one starting at (x, t)=(b, 0) between the regions where Sw>0 and Sw =0.

a b0
x

1

Sin

(a)

a

t

b0 x

(b)

xl(t)

Sw = 1 0 < Sw < 1

xr(t)

Sw = 0

Figure 12.3. Free boundaries in two-phase flow: (a) initial distribution Sin; (b) free boundaries in x− t plane.
Because of the strong capillary effect near Sw =0, the right free boundary moves faster than the
left free boundary
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These qualitative impressions have been made rigorously by VAN DUIJN & ZHANG [74] and VAN DUIJN

& FLORIS [73]. A particular case arises when considering the Riemann problem for (12.21), where

Sin(x) =

{
1 as x < 0 ,
0 as x > 0 .

(12.22)

As in the case of rarefaction waves for first order hyperbolic equations, the initial value problem
(12.21), (12.22) can be reduced to a boundary value problem for the self-similar solution

S(x, t) = s(η) , with η = x/
√
t .

For s results

(RD)

⎧⎪⎪⎨⎪⎪⎩
1
2
η

ds
dη

+
d
dη

(
D(s)

ds
dη

)
= 0 in IR ,

s(−∞) = 1 , s(+∞) = 0 .

This problem has a unique continuous solution s : IR→ [0, 1] and there exist a, b∈ IR, −∞<a<0<
b<∞, such that

s(η) =

⎧⎪⎨⎪⎩
1 as η � a ,

strictly decreasing as a < η < b ,

0 as η � b ,

see VAN DUIJN & PELETIER [75]. The numbers a and b imply the free boundaries

xl(t) = a
√
t < 0 and xr(t) = b

√
t > 0 .

t

0 x

xl(t)

Sw = 1 0 < Sw < 1 Sw = 0

xr(t)

Figure 12.4. Free boundaries
(
xl(t)=a

√
t, xr(t)=b

√
t
)

in the Riemann problem (12.21), (12.22)

The appearance of the free boundaries critically depends on the behaviour of D(Sw) near Sw = 0,
Sw = 1. The precise conditions are (ATKINSON & PELETIER [6, 7], VAN DUIJN & FLORIS [73]): for
some δ>0 ∫ δ

0

D(s)
s

ds <∞ ⇐⇒ b <∞
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and ∫ 1

1−δ

D(s)
1 − s

ds <∞ ⇐⇒ a > −∞ .

With D satisfying (12.18b,c) we have −∞<a<0<b<∞, as shown in Figure 12.4. If D(Sw)=D0

(constant> 0), then a=−∞ and b= +∞ and no free boundaries are present. The solution is found
by direct integration and reads

s(η) =
1
2

erfc
(

η

2
√
D0

)
for η ∈ IR ,

where

erfc(p) =
2√
π

∫ ∞

p
exp

{−z2
}

dz .

Now s(η)∈(0, 1) for all η∈ IR, implying Sw(·, t)∈(0, 1) for any t>0. Thus water and oil are present
everywhere, for any t>0. This means infinite speed of propagation.

Free boundaries, if they exist, satisfy equations (so-called free boundary equations) that are based on
the local fluid balance. With reference to Figure 12.3 we have

dxl

dt
(t) = lim

x↓xl(t)

D(Sw)
∂Sw

∂x
1 − Sw

(x, t) (12.23a)

and

dxr

dt
(t) = lim

x↑xr(t)

D(Sw)
∂Sw

∂x
Sw

(x, t) , (12.23b)

expressing that the speed of a free boundary is given by the speed of the fluid particles (oil for xl

and water for xr). Equations (12.23) determine the optimal regularity for solutions. They are smooth
functions of x and t whenever Sw(x, t)∈(0, 1) (i.e. between the free boundaries), but

lim
Sw↑1

D(Sw)
∂Sw

∂x
1 − Sw

= O(1) and lim
Sw↓0

D(Sw)
∂Sw

∂x
Sw

= O(1) .

Using (12.18b,c) this means

1 − Sw(x, t) = O(√
x− xl(t)

)
as x ↓ xl(t) (12.24a)

and

Sw(x, t) = O(
p
√
xr(t) − x

)
as x ↑ xr(t) . (12.24b)
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x
xl(t) xr(t)

Sw(x, t), t > 0

Figure 12.5. Qualitative behaviour of water saturation near the free boundaries. Here p∈ (0, 1). The differ-
ence is caused by the behaviour of the capillary pressure

Rigorous results concerning properties and regularity of free boundaries induced by degenerate diffu-
sion were first obtained by ARONSON [5] for the porous media equation (12.19). Extensions to doubly
degenerate equations were given by BERTSCH ET AL. [11] and VAN DUIJN & FLORIS [73]. When
applied to the self-similar solution of (RD), equations (12.23) reduce to

1
2
a = lim

η↓a

D(s)
ds
dη

1 − s
and

1
2
b = − lim

η↑b

D(s)
ds
dη

s
.

This behaviour is demonstrated by VAN DUIJN & PELETIER [75].

Including nonlinear convection as in equation (12.16) obviously changes the movement of the free
boundaries. However, with kw and ko satisfying (12.4c), their equations remain the same. We now
have, again with reference to Figure 12.3,

dxl

dt
(t) = lim

x↓xl(t)

Fw(1) − Fw(Sw) +NcD(Sw)
∂Sw

∂x
1 − Sw

(x, t)

= F ′
w(1) +Nc lim

x↓xl(t)

D(Sw)
∂Sw

∂x
1 − Sw

(x, t) (12.25a)

and

dxr

dt
(t) = lim

x↑xr(t)

Fw(Sw) −NcD(Sw)
∂Sw

∂x
Sw

(x, t)

= F ′
w(0) −Nc lim

x↑xr(t)

D(Sw)
∂Sw

∂x
Sw

(x, t) , (12.25b)

but F ′
w(1) = F ′

w(0) = 0. Thus even in the presence of the convective term we have
dxl

dt
� 0 for all

t> 0 and for all Nc> 0, implying that the left free boundary moves against the direction of the flow
due to the capillary forces. This is to be expected from the hyperbolic limit, since the solution of the
Riemann problem (12.17), (12.22) starts with a rarefaction to the right of x = 0 with characteristic
speed F ′(1)=0.
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If we would change the fractional flow function such that F ′(1) > 0, then the convective speed is
strictly positive at Sw = 1 and will eventually overcome the capillary induced movement. Conse-
quently, the water completely sweeps the accessible oil from the porous rock. This follows trivially
if we set Fw(Sw) = Sw in (12.16), while keeping D(Sw) as in (12.18), and consider the solution
satisfying (12.22) at t=0. Setting

Sw(x, t) = s(η) , now with η =
x− t

Nc

√
t
,

gives for s again (RD). Consequently,

xl(t) = t+ a
√
Nct (a < 0)

and

xr(t) = t+ b
√
Nct (b > 0)

for all t�0.

t

x
0

xl(t)

xr(t)
a2Nc

0 < Sw < 1

Sw = 1 Sw = 0

Figure 12.6. Behaviour of the free boundaries when Fw(Sw)=Sw, with (12.22) at t=0

From (12.25) we note that the qualitative behaviour of Sw near the free boundaries remains the same
in the presence of Fw (as long as Fw∈C1([0, 1])). Again (12.24) is satisfied.

One dimensional convection-degenerate diffusion equations received much attention in studies by
Gilding, see [27, 28] for an overview. His work includes necessary and sufficient conditions for the
occurence of free boundaries and a detailed analysis of their qualitative properties.

Remark 12.2. One dimensional two-phase flow problems are special because (12.11) is satisfied with
qinj given. It allows for a reduction to a single equation for one of the saturations. For flows in IRn

(n=2,3) one still has a transport equation for the (water) saturation, but this equation contains the
unknown discharge q (properly scaled). A derivation similar to the one presented here yields

∂Sw

∂t
+ div

(
Fw(Sw)q −NcD(Sw) gradSw

)
= 0 , (12.26)

with Fw and D as in (12.16), and

div q = 0 . (12.27)
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There are various way to close this system. Assuming water to be present everywhere in the flow
domain, one can combine (12.27), Darcy’s law for water and oil, and the capillary pressure to ob-
tain an equation for the water pressure from which q can be recovered. This follows from (in non-
dimensionless variables)

q = qo + qw = −kko

µo
gradPo − kkw

µw
gradPw

= −kko

µo
gradPc(Sw) −

(
kkw

µw
+
kko

µo

)
gradPw ,

giving

div

([
kkw

µw
+
kko

µo

]
gradPw

)
= − div

(
kko

µo
gradPc(Sw)

)
.

After scaling this equation reads

div
(
(MS2

w + (1 − Sw)2) grad pw

)
= − div

(
(1 − Sw)2 grad J(Sw)

)
,

where pw :=
Pw

σ
√

Φ
k

. Hence, pw, and thereby q, depends in a nonlocal way on Sw. This makes the

analysis of (12.26) extremely hard and a qualitative study (as in the one-dimensional case) virtually
impossible. Instead of using the water pressure pw, CHAVENT & JAFFRÉ [14] introduced a global
pressure for which an equation can be derived in a similar way (but without assuming Sw everywhere
in the flow domain). Either way, one has to deal with an elliptic-parabolic system for pressure and
saturation. Such systems were studied by ALT & DIBENIDETTO [3], who were the first to obtain
existence and regularity results. The hyperbolic limit for such systems is far from understood. When
Nc ↓ 0, small scale fingering may occur due to the viscosity difference of water and oil. This raises
fundamental questions concerning the modelling of multi-dimensional flows in absence of capillarity
(see OTTO [57]).

12.3 Three-phase flow

As we shall see, an enormous complexity enters the analysis if gas as a third phase is present in the
reservoir. Let us extend the two-phase description by introducing a gas saturation Sg such that

Sw + So + Sg = 1 , (12.28)

where

Swc � Sw � 1 − Sor − Sgr ,

Sor � So � 1 − Swc − Sgr ,

Sgr � Sg � 1 − Swc − Sor .

Similar to (12.4) we consider scaled saturation Sid∈ [0, 1] (i=w, o, g) and, assuming for gas a Darcy
law as well, we introduce the additional Corey relative permeability kg =k′′′S2

gd. Then

qg = − kg

µg
k gradPg .
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To obtain the hyperbolic setting we disregard the capillary forces between the phases in the pores.
This implies

Pw = Po = Pg . (12.29)

Considering again horizontal flow in a homogeneous and isotropic porous layer of constant thickness,
we now find

qw + qo + qg = qinj > 0 .

Using (12.29) and Darcy’s law for the phases, we also have

qo =
ko

µo

µw

kw
qw and qg =

kg

µg

µw

kw
qw ,

giving

qw

(
kw

µw
+
ko

µo
+
kg

µg

)
=
kw

µw
qinj .

Hence for the water phase results

Φ
∂Sw

∂t
+

∂

∂x

⎛⎜⎜⎝
kw

µw

kw

µw
+
ko

µo
+
kg

µg

qinj

⎞⎟⎟⎠ = 0 .

In terms of the scaled saturations (dropping the index d) and the dimensionless variables

x :=
x

L
, t :=

qinj

ΦL(1 − Swc − Sor − Sgr)
t ,

the water equation reads

∂Sw

∂t
+
∂Fw

∂x
= 0 ,

where

Fw = Fw(Sw, So, Sg) =
MowS

2
w

MowS2
w + S2

o +MogS2
g

,

with

Mow =
µo

µw

k′

k′′
(oil-water viscosity ratio) ,

Mog =
µo

µg

k′′′

k′′
(oil-gas viscosity ratio) .

Concerning these viscosity ratios one typically has (see Table I in Chapter 13)

Mog � 1 and Mow > 1 .
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Similar equations are found for So and Sg. Since (12.28) holds it suffices to consider the equations
for two phases only. Let us eliminate So from the equations and set

u := Sw , v := Sg ; a = Mow , b = Mog .

Then for u=(u, v)T results the system

∂u
∂t

+
∂F(u)
∂x

= 0 , (12.30)

when F=(Fu, Fv)T is given by

Fu(u, v) =
au2

au2 + (1 − u− v)2 + bv2
, (12.31a)

Fv(u, v) =
bv2

au2 + (1 − u− v)2 + bv2
. (12.31b)

Below we discuss some aspects of the Riemann problem involving this system: i.e. we look for
solutions of (12.30) in Q=IR × IR+ subject to

u(x, 0) =

{
ul for x < 0 ,
ur for x > 0 .

Since u+v=1−So �1, the solution u and the initial states ul, ur are confined to the closed triangle

D := {(u, v) : u � 0, v � 0 and u+ v � 1} .

uO

v = 1 − u

v
T

A

U

Figure 12.7. Solution range D for three phase flow

We first need to verify the hyperbolicity of (12.30) in D. In general this depends critically on the
choice of relative permeabilities. HOLDEN [36] and GUZMÁN & FAYERS [33, 32] studied this aspect in
detail. Their work includes the so-called Stone permeabilities where kw = kw(Sw), kg = kg(Sg) and
ko =ko(Sw, Sg). Here we restrict ourselves to the quadratic Corey expressions.

A point U∈D is called an umbilic point if λ1(U)=λ2(U)∈ IR. A region R⊂D is called an elliptic
region if the eigenvalues λ1(U), λ2(U) form a complex conjugate pair for every U ∈ R. We will
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show that (12.30) is strictly hyperbolic in D, except at the vertices O, A and T, where λ1 =λ2 =0, and

at a unique interior point, the umbilic point U=(
b

a+ b+ ab
,

a

a+ b+ ab
)T .

Introducing the notation Fij =
∂Fi

∂j
for i, j=u, v we have

λ1,2 =
1
2
(Fuu + Fvv) ± 1

2

√
d(u) ,

where

d(u) = (Fuu − Fvv)2 + 4FuvFvu .

Differentiation gives

Fuu =
1
N2

[
2au{(1 − u− v)2 + bv2} + 2au2(1 − u− v)

]
,

Fvv =
1
N2

[
2bv{(1 − u− v)2 + au2} + 2bv2(1 − u− v)

]
,

Fuv =
1
N2

2au2{(1 − u− v) − bv} ,

Fvu =
1
N2

2bv2{(1 − u− v) − au} ,

where N=au2+(1−u−v)2+bv2. Along OT we have

λ1 = 0 , λ2 =
2bv(1 − v){

(1 − v)2 + bv2
}2 ;

along OA

λ1 = 0 , λ2 =
2au(1 − u){

au2 + (1 − u)2
}2 ;

and along AT

λ1 = 0 , λ2 =
2abuv{

au2 + bv2
}2 .

Hence λ1 =λ2 =0 at O, A and T. Next we observe that

Fuv > (<) 0 if and only if v < (>)
1 − u

1 + b
,

Fvu > (<) 0 if and only if u < (>)
1 − v

1 + a
.

Hence P := FuvFvu < 0 in the shaded regions in Figure 12.8, P = 0 along their boundaries and in

particular at the point U=(
b

a+ b+ ab
,

a

a+ b+ ab
)T , and P >0 elsewhere.

Version September 15, 2003



12.3. THREE-PHASE FLOW 143

�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

uO

v
T

A

U

P < 0
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P > 0

Figure 12.8. Sign of the product P =FuvFvu in D

Clearly (12.30) is strictly hyperbolic whenever P > 0. By direct substitution we find Fuu = Fvv at
U. Thus U is indeed an interior umbilic point. To exclude other umbilic points or elliptic regions we

need to show that d> 0 inside the shaded regions where P < 0 and along the boundaries v=
1 − u

1 + b

and u=
1 − v

1 + a
, except at U where they intersect. For this purpose we write

N2(Fuu − Fvv) = 2au
(
(1 − u− v)2 + bv2

)
+ 2au2(1 − u− v)

− 2bv
(
(1 − u− v)2 + au2

)− 2bv2(1 − u− v)

=
(
(1 − u− v)2 + bv2

)(
2au− 2(1 − u− v)

)
− (

(1 − u− v)2 + au2
)(

2bv − 2(1 − u− v)
)
,

which gives

N4(Fuu − Fvv)2 = 4
(
(1 − u− v)2 + bv2

)2(
au− (1 − u− v)

)2

− 8
(
(1 − u− v)2 + bv2

)(
(1 − u− v)2 + au2

)(
au− (1 − u− v)

)(
bv − (1 − u− v)

)
+ 4

(
(1 − u− v)2 + au2

)2(
bv − (1 − u− v)

)2
.

Let u �=U be a point where P �0. Then we estimate

1
4
N4(Fuu − Fvv)2 >

(
bv2

)2(
au− (1 − u− v)

)2

− 2
(
bv2

)(
au2

)(
au− (1 − u− v)

)(
bv − (1 − u− v)

)
+

(
au2

)2(
bv − (1 − u− v)

)2
.

Since the middle term in the right hand side equals −1
2
N4FuvFvu, we have

1
4
N4d >

(
bv2

(
au− (1 − u− v)

)
+ au2

(
bv − (1 − u− v)

))2
� 0 .

Hence

d(u) > 0 at any point u �= U .
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The theoretical concepts developed in Chapter 10 are based on the assumptions that the system of
conservation laws is strictly hyperbolic and genuinely nonlinear. As a consequence, the wave curves
(Hugoniot locus for shocks and rarefaction curves) form a coordinate system that enables us to con-
struct a solution of the Riemann problem satisfying the Lax entropy conditions. In the physical space
the solution starts at the given left state, followed by a first wave curve to a middle state, then followed
by a second wave curve to the given right state.

The occurence of the interior umbilic point U changes the topology of the wave curves. As discussed
by ISAACSON ET AL. [40, 38], the Hugoniot locus can have disconnected branches and the rarefaction
curves no longer form a coordinate system in a neighbourhood of the umbilic point. This is shown in
Figure 12.9 for the symmetric case a= b= 1, giving U = (1

3 ,
1
3), see also the rarefaction curves in

Figure 13.4 of Chapter 13.

uO

v
T

A
uO

v
T

Aul

Figure 12.9. (a) Hugoniot locus for ul; (b) rarefaction curves, solid lines: slow rarefactions, dash-dot lines:
fast rarefactions. Arrows indicate direction of increasing characteristic speed (λ)

To get some insight in the complex nature of the Hugoniot locus we consider the following example.
Let a=b=1 and let ul =(α,α)T with 0�α� 1

2 . With Nl =u2
l +(1−ul−vl)2+v2

l =2α2+(1−2α)2,
we consider ⎧⎪⎪⎪⎨⎪⎪⎪⎩

u2

N
− α2

Nl
= s(u− α) ,

v2

N
− α2

Nl
= s(v − α) .

Eliminating the shock speed s results in the algebraic expression

u2 − u− α

v − α
v2 =

α2

Nl
N

(
1 − u− α

v − α

)
or

(v − α)u2 − (u− α)v2 =
α2

Nl
N(v − u) .
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Since

(v − α)u2 − (u− α)v2 = α(v2 − u2) + u2v − uv2

=
(
α(v + u) − uv

)
(v − u) ,

we find that the Hugoniot locus is given by

v = u

and

α2

Nl
N − α(u+ v) + uv = 0 . (12.32)

Using N=u2+(1−u−v)2+v2 and setting

w := u+ v , 0 � w � 1 ,

z := uv , 0 � z � 1
4
,

expression (12.32) becomes

z =
1

1 − 2α2

Nl

{
αw − α2

Nl

(
w2 + (1 − w)2

)}
=: f(w,α) .

The definitions of w and z imply

u2 − wu+ f(w,α) = 0 .

By symmetry we consider only the root

u =
w

2
− 1

2

√
w2 − 4f(w,α) , (12.33a)

giving

v =
w

2
+

1
2

√
w2 − 4f(w,α) . (12.33b)

Direct computation shows:

(i) f(0, α) =
−α2

(1 − 2α)2
< 0 ;

(ii)
∂2f

∂w2
(w,α) = 4f(0, α) < 0 for 0 � w � 1 ;

(iii) f(1, α) = 0 for α = 0, 1
3 and 1

2 ;
f(1, α) > 0 for 0 < α < 1

3 ;
f(1, α) < 0 for 1

3 < α < 1
2 ;

(iv) f(1
2 , α) = 1

2f(1, α) ;
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(v) w2 − 4f(w,α) = 0 if and only if

w =

⎧⎪⎨⎪⎩
p1(α) = 2α ,

p2(α) =
2α

12α2 − 4α+ 1
.

Hence for 0<α< 1
3 , there exist w∗(α)∈ (0, 1

2 ) (with w∗(α)↓0 as α↓0 and w∗(α)↑ 1
2 as α↑ 1

3 ) such
that

f(w,α) < 0 for 0 � w < w∗(α) ,
f(w,α) > 0 for w∗(α) < w � 1 .

For 1
3 <α<

1
2 , there exist 1

2 <w∗(α)<w∗(α)< 1 (with w∗(α) ↓ 1
2 , w∗(α) ↑ 1 as α ↓ 1

3 and as α ↑ 1
2 )

such that

f(w,α) < 0 as 0 � w < w∗(α) and for w∗(α) < w � 1 ,
f(w,α) > 0 as w∗(α) < w < w∗(α) .

We have

p1(α) < p2(α) for 0 < α <
1
3
,

p1(α) = p2(α) for α =
1
3
,

p1(α) > p2(α) for
1
3
< α <

1
2
.

Note the special role played by α= 1
3 . This corresponds to ul = (1

3 ,
1
3)T = U, the interior umbilic

point.

We now have the ingredients to classify the solutions of (12.32) and to construct the Hugoniot locus.

1. α=0.
Since f(w, 0)= 0 we have z=u, v= 0 giving {u= 0, 0� v� 1} and {0�u� 1, v= 0} as
branches of the locus.

uO

v
T

Aul

Figure 12.10. Hugoniot locus for α=0
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2. 0<α< 1
3 .

This gives (with w as parametrization):
No solution for 0�w<w∗(α), since f <0 and u<0;
A unique solution for w∗(α) � w � p1(α) = 2α, with u = 0 as w = w∗(α) and u = α as
w=p1(α);
No solution for w∗(α)<w<w∗(α), since w2−4f <0;
A unique solution for w∗(α)�w<1, with u= 1

2p2(α) as w=p2(α) and u= 1
2−1

2

√
1−4f(1, α)

as w=1.

Hence this α-range yields the locus

w

w2

p2p1w∗
1

4f(w, α)

w = p2

w = w∗

w = p1

uO

v
T

A
ul

Figure 12.11. Hugoniot locus for 0<α< 1
3

Using (12.33) we find

dv
du

=
dv
dw

/ du
dw

= −1 as w = p1(α), p2(α) (α �= 1
3
) ,

implying that the branches cross u=v perpendicular.

3. α= 1
3 , the umbilic point.

Using w∗(1
3)= 1

2 , p1(1
3 )=p2(1

3 )= 2
3 and f(1, 1

3)=0 (see Figure 12.12 (left)) gives:
No solution for 0�w< 1

2 ;
A unique solution for 1

2 �w�1, with u=0 as w= 1
2 , u= 1

3 as w= 2
3 and u=0 as w=1.

Since p1 =P2 we have

w2 − 4f(w,
1
3
) = K

(
w − 2

3

)2

with K = 9 .

Then (12.33) becomes

u =
w

2
− 3

2

∣∣∣∣w − 2
3

∣∣∣∣ ,
v =

w

2
+

3
2

∣∣∣∣w − 2
3

∣∣∣∣ .
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Using ± for the other branches and eliminating w, gives for the locus the explicit expression

u = v , u =
1 − v

2
, v =

1 − u

2
.

4f(w, 1
3
)

uO

v
T

Aw

w2

12
3

1
2

ul

Figure 12.12. Hugoniot locus for ul =U, the umbilic point

4. 1
3 <α<

1
2 .

Now p2<p1, with p2<
2
3 , and f(1

2 , α)= 1
2f(1, α)<0, see Figure 12.13 (left). As in case 2 this

yields the locus

uO

v
T

Aw

w2

1w∗w∗

p1p2
1
2

ul

4f(w, α)

Figure 12.13. Hugoniot locus for 1
3 <α<

1
2

5. α= 1
2 .

Since p2(α), w∗(α)↓ 1
2 and p1(α), w∗(α)↑1 as α↑ 1

2 , the locus ends up as
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uO

v
T

A

ul

Figure 12.14. Hugoniot locus for α= 1
2

These manipulations clearly demonstrate the complexity of solving three-phase Riemann problems,
even for the simplest cases. Each model has its own peculiarities and requires an approach of its own.
There is little unifying theory. In the next chapter we give – as an example – the complete description
of the construction of the solution of a particular three-phase Riemann problem.
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13 Uniqueness conditions in a hyper-
bolic model for oil recovery by
steamdrive

13.1 Introduction

Steamdrive, being the most important enhanced oil recovery technique, received considerable atten-
tion in the engineering literature during the past decades. As examples we mention the experimental
work of KIMBER ET AL. [42], GÜMRAH ET AL. [31] and FAROUQ ALI ET AL. [22], and the modeling
work of MANDL & VOLEK [49], GODDERIJ ET AL. [30] and PRATS [60]. An important characteristic of
their models is the occurrence of a Steam Condensation Front (SCF) as an internal boundary between
the hot steam zone and the cold liquid zone. Furthermore, in their approach, the saturation of the oil
remaining behind in the steam zone does not follow from the analysis of the models, but is a-priori
given as model parameter.

SHUTLER [66] proposed a relatively simple model which treats the oil saturation in the steam zone as
an unknown. We explain it here in some detail because it forms the basis for our approach. In this
model again a SCF is present, which separates an upstream steam zone from a downstream oil/water
zone. It is assumed that all steam condenses at the SCF. The velocity of the SCF follows from a
local heat balance. Because the heat capacity of the porous medium depends on the fluid saturations,
there is coupling between the heat balance and the saturation equations. Although this coupling is
weak, Shutler takes it into account. Because fluid saturations are constant at the SCF, he finds that its
velocity is constant as well. The steam zone is considered as a zone of constant high temperature in
which oil, non-condensing gas (steam) and connate water are present. In the downstream cold zone
oil and water are present at the original reservoir temperature. Capillary forces are disregarded. Water
and oil conservation equations applied at the SCF, combined with the Buckley–Leverett equation for
gas/oil in the steam zone and for oil/water in the cold zone, lead to a complete solution of the model
equations. However, the assumption that the steam zone contains connate water only is not clear. This
assumption is apparently necessary to close the problem. It may also have an undesirable effect on
the prediction of the efficiency of the steamdrive process. Models related to the one of Shutler have
been proposed by POPE [59] and YORTSOS [79].
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WINGARD & ORR [78] extended the model of Shutler to incorporate three phase flow in the steam
zone. A careful inspection of their paper led us to the conclusion that the presented model cannot
be used for our set of parameter values. To be precise, the upstream saturations at the SCF cannot
be obtained from the upstream boundary conditions by integrating the mass balance equations. We
need additional conditions at the SCF to obtain a unique solution. From a physical point of view, such
conditions should originate from a detailed local model of the steam condensation process itself.

The one dimensional steamdrive model considered in this chapter unifies a hyperbolic interface model
and a parabolic transition model. In the hyperbolic setting, a SCF exists and moves at a given speed
through the porous medium. It separates the hot steam and the cold liquid regions. All steam con-
denses at the SCF and no capillary forces are present. Inspired by the work of STEWART & UDELL

[68], UDELL [72] and MENEGUS & UDELL [51], we consider various local transition models. In these
models, steam condenses according to a delta distribution at the SCF and fluid flow towards and from
the SCF is governed by the Darcy law including capillary effects. The model equations in the transi-
tion zone are solved by the method of matched asymptotic expansions. This leads to solutions in the
form of travelling waves, moving with the speed of the SCF. The conditions for such waves to exist
are precisely the missing matching conditions for the saturations at the SCF. We will explicitly show
how different transition models yield different saturation combinations at the SCF and consequently
different solutions of the hyperbolic model. These differences are not always small. For instance when
comparing the results of a transition model with constant capillary diffusion and one with Brooks–
Corey three phase capillary pressures, the differences are well-noticeable and cannot be disregarded
for practical purposes.

Such dependence on details of the transition model (i.e. parabolic regularization) is known to occur in
systems of conservation laws. It arises in the context of transitional waves, see for instance ISAACSON

ET AL. [40], [41], GUZMÁN & FAYERS [33] and GLIMM [29]. Using vanishing viscosity (in our case
vanishing capillary diffusion and heat conduction) as the entropy condition for the hyperbolic system,
one finds travelling waves describing the transition through the shock. If the travelling wave connects
a node and a saddle (of the associated dynamical system), the resulting shock is admissible as a Lax
shock, see ISAACSON ET AL. [40], [41]. If, however, the travelling wave connects two saddles, the Lax
criteria fail. But the resulting shock is still admissible in the physical sense. It is called a transitional
wave or shock. Saddle to saddle connections are sensitive to perturbations of the system. This ex-
plains in a unspecified way the dependence of the matching conditions at the SCF on the parameters
of the transition model.

In Section 13.2 we describe the physical model. First we present the base case, with input parameters
summarized in Table I and Table II. In the base case we model the transition region with constant
(saturation independent) capillary diffusion, an abrupt temperature drop from steam temperature to
reservoir temperature at the SCF and no steam downstream of the SCF. We also study three cases in
which one of these simplifying conditions is relaxed (i) Brooks-Corey three-phase capillary pressures,
(ii) an exponential temperature decline downstream the SCF, and (iii) a non-zero steam saturation
downstream the SCF in the transition region. In Section 13.3 we present the analysis of the base case.
In Section 13.4 we analyze the problem with different transition models. In particular we compare
the results of the three cases defined in Section 13.2 with the base case. In Section 13.5 we study
the variation of model parameters. There we introduce the average oil saturation in the steam zone
and investigate its dependence on reservoir and fluid properties. To construct the full solution of the
steamdrive problem is rather involved. Therefore we present in Section 13.5 an approximation, which
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is fairly straightforward to obtain. In Figure 13.13 we compare the results for the full solution and
this approximation. It clearly indicates in which parameter range the approximation is acceptable for
engineering purposes. We summarize our findings in Section 6 which contains the conclusions.

13.2 Physical model

Oil displacement by steamdrive through a porous medium is a complex physical process which is
controlled by the steam condensation process and by viscous and capillary forces, see for instance
WINGARD & ORR [78] or STEWART & UDELL [68]. In this chapter we propose a simplified approach
in which all steam condenses at an a-priori known Steam Condensation Front (SCF) and in which
capillary forces as well as temperature variations are disregarded except in a small neighborhood of
that front. Here “small” must be understood in a suitable dimensionless context. To model this we
consider a global interface model in which capillary forces are absent on any scale and in which the
interface (SCF) separates the hot steam zone from the remainder of the reservoir. Further we consider
a local transition model which takes capillary forces and temperature variations into account at the
SCF. The transition model yields the correct matching conditions at the SCF in the hyperbolic inter-
face model.

In modeling a one dimensional flood through a reservoir we consider the porous medium to be homo-
geneous, with constant porosity φ, and of semi-infinite extent. The multi-phase flow (oil, water, steam
(gas)) through the reservoir is directed in what we choose to be the positive x−axis. Hence the phase
saturations So, Sw, and Sg are functions of position x and time t only, see Figure 13.1. Initially, at
t = 0, the reservoir contains oil and connate water: i.e. for all x > 0

So(x, 0) = 1 − Swc , Sw(x, 0) = Swc , Sg(x, 0) = 0 . (13.1)

From the left steam of 100 % quality is injected at rate uinj: i.e at x = 0 and for all t > 0

So(0, t) = 0 , Sw(0, t) = Swc , Sg(0, t) = 1 − Swc . (13.2)

In writing these initial and boundary conditions we assume that the residual oil and gas saturations are
constant. Without loss of generality they are given the value zero: see also Table I, where the values
of all quantities used throughout this chapter are given.

Oil and water are produced at the right, in our simplified model at x = ∞. All fluids, also steam, are
considered incompressible. To avoid non-essential complications the thermal expansion coefficients
of the fluids are taken to be zero. Heat losses to the surroundings as well as gravity effects are not
considered. Furthermore, we assume that the oil is non-distillable i.e. the partial vapor pressure of the
oil in the gas phase is negligible. Consequently we ignore the presence of a distillable oil bank.
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Figure 13.1. Sketch of the one dimensional steam displacement process and the phase saturations

13.2.1 Interface model

We distinguish two zones, see Figure 13.1, one upstream and one downstream relative to the SCF.
Upstream is the steam zone. We assume that this zone is at constant steam temperature T1, thus dis-
regarding the temperature gradient as a consequence of the pressure gradient driving the fluids and
the boiling point curve. Capillary forces are neglected and fluid transport is governed by Darcy’s
law for multi-phase flow. With the exception of Section 13.5, we use power law expressions for the
relative permeabilities. In this work we keep the exponents fixed and all equal to four, see Table II.
Any other choice greater than one would give the same qualitative results. Downstream is the liquid
zone where only oil and water are present. This zone is at constant reservoir temperature To. Again
capillary forces are disregarded and fluid transport is governed by Darcy’s law for multi-phase flow.
The relative permeabilities are the same as in the steam zone.

Because oil and water experience different temperatures, their viscosities µi=o,w may vary substan-
tially. To account for this we take the well-known expressions, e.g. see REID ET AL. [62] and Table
I,

ln
µi

µr
= ai +

bi
T
, i = o,w . (13.3)

The two zones are separated by the SCF. The velocity of this front vst is determined from a local heat
balance, in which the heat released by the condensing steam impinging on the SCF is equal to the
amount of heat necessary to warm up the reservoir, see MANDL AND VOLEK [49]. The result is

vst =
ρg∆H uinj

(ρc)r(T1 − To)
. (13.4)
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The symbols appearing in this expression are explained in Table I. The effective heat capacity of the
reservoir includes the heat capacity of the matrix and the fluids in the pores. Variations in saturations
have a relatively small effect on the effective heat capacity. This allows us to decouple the balance
equations for heat and for mass. Therefore we may consider the velocity of the SCF as given.

In the interface approach the steam condenses at the SCF, x = vstt, only. Due to condensation there
occurs water production Qw [m3/(m3 s)], i.e. volume of produced water due to condensation per unit
volume reservoir and per unit time, according to

Qw =
ρg

ρw
rδ(x− vstt) , (13.5)

and steam loss Qg [m3/(m3 s)], i.e. the volume of condensed steam per unit volume of reservoir per
unit time, according to

Qg = rδ(x− vstt) . (13.6)

Here δ(·) [1/m] denotes the Dirac distribution and r [m/s] the a priori unknown steam condensation
rate. This factor has to be determined from the saturations at the SCF. In the absence of heat losses
it does not depend on the location of the SCF. Using the values of the parameters in Table I, we find
only a weak dependence of r on the saturations. Computations show that r is almost equal to the steam
injection rate, see Section 13.3.3.

In order to match saturations across the SCF we need to make a detailed analysis of the possible
transitions occurring there. For this we need a model which is outlined below.

13.2.2 Transition model

In the transition model we regularize the (possible) discontinuous saturations at the SCF by incor-
porating capillary effects. In addition we have to specify the condensation process as well as the
temperature variation within the transition region. We shall first formulate a simple base case to
illustrate the underlying ideas and then define three extensions.

Base case

Here we assume that the effect of capillary forces can be described in terms of a constant diffusivity D.
In Section 13.3.2 we let D ↓ 0 in the appropriate dimensionless setting (i.e. we let D

Luinj
↓ 0), which

yields the missing matching conditions at the SCF. When D
Luinj

is small, we have a small transition
region which is centered at the SCF and which travels with the same velocity, see Figure 13.2. To
study the saturations within the transition region we introduce the dimensionless variable

ξ =
x− vstt

L

Luinj

D
(13.7)

and consider the blow up as D/Luinj ↓ 0. In terms of ξ this yields a transition region extending from
ξ = −∞ to ξ = +∞. The corresponding limit saturations have the form of travelling waves. As
ξ → −∞ the waves have to be matched with the outer saturations in the steam (hot) zone and as
ξ → +∞ with the outer saturations in the liquid (cold) zone.
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Figure 13.2. Sketch of transition region between the steam zone and the cold zone. The transition region
consists of the SCF, an upstream region with steam of constant temperature and a downstream
region. In the base case, the downstream region has the cold reservoir temperature and no steam
is present there. Possible extensions are discussed in Sections 13.2.2 - 13.2.2

For simplicity we assume that also in the transition region the steam condenses at the SCF, where
ξ = 0. This means that we ignore mechanisms causing a delay of the steam condensation process.
Consequently two transition sub-regions can be identified: one upstream and one downstream the
SCF. In both sub-regions we assume again that the temperature is constant: i.e.

T (ξ) =

{
T1 for ξ < 0 ,

To for ξ > 0 .
(13.8)

We use this expression in the viscosity formula (13.3) to account for the temperature change in the
transition region. Expression 13.8 describes the case where the temperature changes at a much smaller
scale than the saturations. The case where temperature and saturations change at similar scales is con-
sidered in Section 13.2.2. The assumption of local thermodynamic equilibrium (To is much smaller
than the boiling temperature) means that no steam can be present in the downstream part of the tran-
sition zone. In particular it implies

Sg(ξ = 0) = 0 . (13.9)

It turns out that this condition is needed as well to obtain a unique set of matching conditions at the
SCF in the interface model. However, we will investigate cases where Sg(0) > 0 as well.

Brooks–Corey capillary pressure diffusion

In this extension of the base case we keep (13.8) and (13.9) but we take the capillary forces more
realistically into account. Clearly, this involves the introduction of three phase capillary pressures.
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Since experimental data are hardly available, we assume that the oil-water capillary pressure po − pw

only depends on the water saturation and the steam-oil capillary pressure pg − po only on the steam
saturation (see e.g. AZIZ & SETTARI [8]). Combining these pressures an expression results for the
steam-water capillary pressure pg − pw. Thus in this approach, three phase capillary pressures can be
expressed in terms of well-known two-phase capillary pressures. The saturation dependence of the
capillary pressures enters through the Leverett-functions. We write

P ow
c = σ

√
φ

k
Jow(Sw) and P go

c = σ

√
φ

k
Jgo(Sg) , (13.10)

where we have used the fact that the interfacial tension (σ) between oil and water and between gas
and oil is approximately the same. For the Leverett functions we use the empirical Brooks–Corey
expressions, see for instance DULLIEN [20]. This means that Jow is proportional to(

Sw − Swc

1 − Swc

)−1/λs

, (13.11)

where λs is a factor related to the sorting. The expression for Jgo is obtained by substituting Sw =
1 − Sg into (13.11).

When λs is large the capillary pressure curve is flat, meaning that the grains have approximately the
same size and are well sorted. When λs is small the capillary pressure curve is steep, and the grains are
badly sorted. Finally we assume that the Leverett function satisfies J(1

2 ) = 1
2 . For most experimental

data, as in [20], indeed 0.3 < J(1
2 ) < 0.7. All of this leads to the following expressions for the

capillary pressure:

P ow
c (Sw) =

σ

2

√
φ

k

(
1
2 − Swc

1 − Swc

)1/λs (
Sw − Swc

1 − Swc

)−1/λs

and P go
c (Sg) = P ow

c (1 − Sg) .

(13.12)

In Section 4 we introduce the capillary pressure functions in the different equations. This leads to
terms resembling non-linear diffusion. As a characteristic capillary diffusion number we find

D =
σ
√
φk

µo
. (13.13)

As in the base case we investigate the process
D

Luinj
↓ 0 to obtain matching conditions for the interface

model.

Temperature variation

Here we consider constant capillary diffusion and (13.9), but we modify (13.8). To model the tempera-
ture distribution properly, one must consider the heat-balance equation in terms of the local coordinate
ξ and construct a solution satisfying T → T1 as ξ → −∞ and T → To as ξ → +∞. This proce-
dure may be complicated because the coefficients in the temperature equation depend on the fluid
saturations. Ignoring this dependence, MILLER [53] finds a solution of the form

T (ξ) =
{
T1 for ξ < 0 ,
To + (T1 − To)e−αξ for ξ > 0 .

(13.14)

Here the constant α is the ratio of the the front velocity and the thermal conductivity in the appropriate
dimensionless setting.
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Positive steam saturation at SCF

Now we consider a constant capillary diffusivity and (13.8), but we modify (13.9). If we drop the as-
sumption concerning local thermodynamic equilibrium, there is no physical reason why (13.9) would
hold. In that case, steam condenses at a rate which is limited by diffusional processes in the vapor
zone. Corresponding to this we construct solutions for which steam is also present in the downstream
region. To obtain such solutions we have to prescribe a positive value for the steam saturation at the
SCF:

Sg(ξ = 0) > 0 (prescribed) . (13.15)

Remark 13.1. In Section 13.5 we discuss the results of computations for the full Brooks–Corey case.
There we keep (13.8) and (13.9) in the transition model, but we modify both the capillary pressure
and relative permeabilities according to Brooks–Corey and Corey–Stone expressions. This is a mod-
ification of Section 13.2.2 in the sense that power law relative permeabilities are replaced by the
Corey–Stone relative permeabilities, where krw = krw(Sw), krg = krg(Sg) and kro = kro(Sw, Sg).

Table I, Summary of physical input parameters�

Physical quantity symbol value unit
characteristic length L 100 [m]
steam temperature T1 486 [K]
reservoir temperature To 313 [K]
injection rate steam uinj 9.52 10−4 [m3/m2/s]
steam viscosity µg 1.63 10−5 [Pa s]
oil viscosity at T1 µo(T1) 2.45 10−3 [Pa s]
oil viscosity at To µo(To) 0.180 [Pa s]
water viscosity at T1 µw(T1) 1.30 10−4 [Pa s]
water viscosity at To µw(To) 7.21 10−4 [Pa s]
viscosity lnµi/µr = ai + bi/T µi µi(T ) [Pa s]
reference viscosity µr 1 [Pa s]
coefficient in oil viscosity ao -13.79 [−]
coefficient in oil viscosity bo 3781 [K]
coefficient in water viscosity aw -12.06 [−]
coefficient in oil viscosity bw 1509 [K]
Brooks–Corey sorting factor λs 2 [-]
enthalpy H2O(l)(To) → H2O(g)(T1) ∆H 2636 [kJ/kg]
effective heat capacity of rock (ρc)r 2029 [kJ/m3/K]
thermal coefficient in (13.14) α 0.017 [-]
capillary diffusion constant D 2.2 10−7 [m2/s]
velocity SCF vst 7.12 10−5 [m/s]
porosity φ 0.38 [m3/m3]
permeability k 4.3 10−13 [m2]
interfacial tension σ 30 10−3 [N/m]
water density ρw 1000 [kg/m3]
steam density ρg 10.2 [kg/m3]
connate water saturation Swc 0.15 [m3/m3]
residual gas saturation Sgr 0.0 [m3/m3]
residual oil saturation Sor 0.0 [m3/m3]
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Table II, Expressions for relative permeabilities

symbol quantity expression
krw water permeability ((Sw − Swc)/(1 − Swc))4

kro oil permeability (So/(1 − Swc))4

krg steam permeability (Sg/(1 − Swc))4

13.3 Mathematical formulation of base case

13.3.1 Interface model

The interface model described in Section 13.2.1 results in the following mass balance equations, see
for instance FALLS & SCHULTE [21],

φ
∂Sw

∂t
+
∂ufw

∂x
= Qw =

ρg

ρw
rδ(x− vstt) , (13.16a)

φ
∂Sg

∂t
+
∂ufg

∂x
= −Qg = −rδ(x− vstt) , (13.16b)

φ
∂So

∂t
+
∂ufo

∂x
= 0 . (13.16c)

The non-zero terms in the right side of equations (13.16a) and (13.16b) are a consequence of the
steam condensation at the SCF, see also expressions (13.5) and (13.6). Except for these terms, system
(13.16a)–(13.16c) consists of the standard multi-phase flow equations in which u denotes the total
specific discharge and fi (i=o,w,g) the fractional flow functions

fi =
Moikri

Mowkrw + kro +Mogkrg
, (13.17)

where Moi are the mobility ratio’s

Moi =
µo

µi
. (13.18)

Note that these quantities have different values up and downstream the SCF. This is due to the tem-
perature dependence of the viscosity which enters through equations (13.3). In the interface model
we will not write this dependence explicitly. Furthermore note that the specific discharge u and the
steam condensation rate r are both unknown and have to be determined from the problem. However,
by adding equations (13.16a)–(13.16c) and using

∑
Si =

∑
fi = 1, we find the volume balance

∂u

∂x
= −r

(
1 − ρg

ρw

)
δ(x − vstt) .

Applying the boundary condition u(0, t) = uinj (steam injection rate), we find upon integration

u = u(x, t) = uinj − r

(
1 − ρg

ρw

)
H(x− vstt) , (13.19)

�The values of the steam parameters in Table I assume a steam pressure of 20 bar. Furthermore the value of the thermal
coefficient α is based on a thermal diffusivity of 9.85 10−7 [m2 /s]. Note that this coefficient is proportional to the ratio of
the capillary and thermal diffusivity.
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where H denotes the Heaviside function: H(s) = 0 for s < 0 and H(s) = 1 for s > 0. Thus the
phase saturations and the constant r have to be determined from equations (13.16a)–(13.16c), (13.19)
and the initial-boundary conditions (13.1), (13.2).

Next we rewrite the equations in dimensionless form by redefining

Sw :=
Sw − Swc

1 − Swc
, So :=

So

1 − Swc
, Sg :=

Sg

1 − Swc

t :=
uinj t

φL
, u :=

u

uinj
, x :=

x

L
,

and by introducing the dimensionless steam condensation rate

Λ =
r

uinj
, (13.20)

and the dimensionless SCF velocity

v =
vst
uinj

φ(1 − Swc) . (13.21)

Eliminating the oil saturation by setting So = 1 − Sw − Sg, we obtain the steamdrive problem:

(SD)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find the phase saturations Sw, Sg and the condensation constant Λ such that

∂Sw

∂t
+
∂ufw

∂x
=
ρg

ρw
Λδ(x− vt) , (13.22)

∂Sg

∂t
+
∂ufg

∂x
= −Λδ(x− vt) , (13.23)

and

u = 1 − Λ
(

1 − ρg

ρw

)
H(x− vt) , (13.24)

for x > 0 and t > 0, subject to initial-boundary conditions

Sw(x, 0) = 0 , Sg(x, 0) = 0 for all x > 0 , (13.25)

and

Sw(0, t) = 0 , Sg(0, t) = 1 for all t > 0 . (13.26)

We shall consider solutions of this problem for which no steam is present in the downstream region:
i.e. we pose the additional condition (as part of (SD))

Sg(x, t) = 0 for x > vt, t > 0 . (13.27)

This seems a natural condition since the temperature in this region is the cold reservoir temperature
To at which no steam can survive at the current reservoir pressure. In Figure 13.3 we show the regions
in which the various phases are present.

In analyzing (SD), we shall frequently represent (part of) the solution in the (Sw, Sg) plane (phase
plane). Since 0 � Sw + Sg = 1 − So � 1, the solution is confined to the closed triangular domain D
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Figure 13.3. Distribution of phases in the x− t plane

in Figure 13.4. The vertices are denoted by O = (0,0), T = (0,1) and A = (1,0). Note that any solution
must pass through the points T (boundary conditions) and O (initial conditions), and must coincide
with part of the Sw-axis (solution in the cold zone where Sg = 0).

In the steam zone x < vt, where the three phases are present and where u = 1 (see (13.24)), we have
to solve (13.22) and (13.23), which we write in vector notation as

∂S
∂t

+
∂

∂x
f(S) = 0 . (13.28)

Here S and f denote the column vectors S = (Sw, Sg)T and f = (fw, fg)T . The eigenvalues λ1 and
λ2 of the Jacobian matrix

Df =
(
fww fwg

fgw fgg

)
, (13.29)

where fij =
∂fi

∂Sj
(i,j=w,g), are given by

λk(S) =
1
2
(fww + fgg) + (−1)k

1
2

√
{(fww − fgg)2 + 4fwgfgw} . (13.30)

Because we used Corey type relative permeabilities, as in Table II, the eigenvalues are real for all
saturations in D. Moreover, the system is strictly hyperbolic, with 0 � λ1 < λ2, except at four points:
The three vertices and one interior point. These are the umbilic points, see MARCHESIN ET AL. [50]
and GUZMÁN & FAYERS [32]. There the eigenvalues are equal and the hyperbolic system degenerates.
Due to the high mobility contrast, the interior umbilic point is close to O and plays no role in the
analysis.

The right eigenvectors of Df are denoted by tk = tk(S), k=1,2. A solution of (13.28), satisfying
constant boundary conditions, consists in general of a combination of shock waves, constant states
and rarefaction waves, see for example LAX [45], LEVEQUE [47], SMOLLER [67], or HELLFERICH [34].
Rarefaction waves are self-similar solutions depending on η = x/t only. Considering S = S(η), we
find from (13.28) that they satisfy

−ηdS
dη

+
d
dη

f(S) = 0 (13.31)
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or

−ηdS
dη

+Df
dS
dη

= 0 . (13.32)

in which we recognize an eigenvalue problem for the matrix Df . Hence

dS
dη

= α(η)tk(S) (13.33)

and

η = λk(S) , (13.34)

where α is an η-dependent proportionality factor which is a-priori unknown. As a consequence of
(13.34) we observe that a rarefaction wave is only possible if the eigenvalue varies monotonically
along its representation in the phase plane. Differentiating (13.34) with respect to η and using (13.33)
gives

1 = ∇λk(S) · dS
dη

= α(η)∇λk(S) · tk(S) , (13.35)

where ∇ denotes the gradient in the phase plane. Substituting this into (13.33) yields the system

dS
dη

=
1

∇λk(S) · tk(S)
tk(S) , (13.36)

as long as ∇λk(S) · tk(S) �= 0 (genuine nonlinearity, LAX [45]).

If a rarefaction is to be part of the solution of (SD) we obviously want

λ2(S) � v , (13.37)

since otherwise the rarefaction would exceed the SCF, yielding a multi-valued solution. The region
where (13.37) holds strictly is indicated in Figure 13.4 as the set Dl above the curve

l = {(Sw, Sg) : λ2(Sw, Sg) = v} . (13.38)

In spite of (13.37) we computed solutions of the system (13.36) in the full triangular domain D.
Though not strictly necessary for the analysis presented here, this gives a complete picture of the slow
and fast rarefaction waves in the Sw−Sg phase-plane. For k=2, the fast rarefactions, we solved (13.36)
for η < v and for η > v with initial values (Sw(v), Sg(v)) ∈ l. Computing the orbits backwards in
η we found that they all reached the top T , i.e. the boundary conditions, at η = 0: see Figure 13.4
where several of these fast rarefactions are shown (solid curves). The degenerate behavior of the right
side of equations (13.36) causes the collapse of the orbits in the top of the triangle. This is discussed
in detail by MARCHESIN ET AL. [50].

For k=1, the slow rarefactions, we solved (13.36) forwards in η with initial values taken from the
segment AT. The corresponding start value of η is

η = λ1(Sw, Sg) with (Sw, Sg) ∈ AT . (13.39)
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Figure 13.4. Slow (dashed) and fast (solid) rarefactions, see (13.36). The eigenvalues of the slow rarefactions
increase from the right to the left and the eigenvalues of the fast rarefactions increase from the
top to the bottom

These slow rarefactions are also shown in Figure 13.4 (dashed curves). Both slow and fast rarefac-
tions are shown up to points where the eigenvalues reach a local extremum (along the corresponding
orbits). The curves connecting these points form the inflection locus, see ISAACSON ET AL. [40]

We will not discuss the occurrence of shocks in the steam zone. Indeed, see region Dl in Figure 13.4,
the eigenvalues for the fast rarefactions increase from top to bottom and hence shocks do not arise for
our choice of boundary conditions. To find a solution of (SD) we use only fast rarefactions or constant
states upstream the SCF. Later on in Section 13.3.3 where we discuss the matching conditions at the
SCF, we show in fact that constant states are not allowed. Thus the solution for x < vt consists of a
fast rarefaction only. It connects the boundary condition Sg = 1 to a point (Sw(v), Sg(v)) ∈ l at the
SCF.

If a pair (S∗
w, S

∗
g) ∈ AT represents a boundary condition different from (13.26), then the correspond-

ing solution in the steam zone starts with a slow rarefaction (since λ1(S∗
w, S

∗
g) = 0), followed by a

constant state, then followed by a fast rarefaction to match up with the SCF. This can only occur for
boundary conditions above line l, provided the ensuing slow rarefaction does not intersect l before
transition to the fast path.

Next we turn to the cold region downstream the SCF. Because of (13.27), only oil and water are
present there. Hence we are left with the two phase Buckley–Leverett equation

∂Sw

∂t
+ u+∂fw

∂x
= 0 for x > vt, t > 0 , (13.40)

Version September 15, 2003



164 13 UNIQUENESS CONDITIONS IN A HYPERBOLIC MODEL FOR OIL RECOVERY BY STEAMDRIVE

where u+ denotes the downstream velocity, see (13.24),

u+ = 1 − Λ
(

1 − ρg

ρw

)
. (13.41)

We need to solve equation (13.40) with the a-priori unknown saturation S+
w := limx↓vt Sw(x, t) along

the SCF and with Sw = 0 initially. Assuming S+
w to be constant and using standard Buckley–Leverett

(hyperbolic) theory, we find that the entropy solutions consist of shocks or rarefactions followed by
shocks. Furthermore, only if the speed of the rarefactions or the shocks exceeds the speed of the SCF
we find non-trivial solutions. With reference to Figure 13.5 this implies that

S∗ � S+
w � S∗ (non − trivial solutions) , (13.42)

Figure 13.5. Construction of admissible S+
w interval

where S∗ is the (smallest) root of

fw(Sw)/Sw = v/u+ (13.43)

and S∗ is the largest root of

dfw(Sw)
dSw

= v/u+ , (13.44)

or

S+
w = 0 (trivial solution) . (13.45)

The value S∗ corresponds to the smallest shock possible with speed � v, and S∗ corresponds to the
largest rarefaction possible with speed � v. Clearly (SD) does not specify the saturations at the SCF.
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To find the physically correct matching condition, we need to consider the local behavior at the SCF
by means of the transition model (see Section 13.2.2). We shall use the notation

S
+(−)
i = lim

x↓(↑)vt
Si(x, t) , i = g,w . (13.46)

As a consequence of (13.27) we have S+
g = 0.

13.3.2 Transition Model

In the transition model we include capillary forces in the form of a constant diffusivity D in all three
balance equations (13.16a)–(13.16c). As we shall show below we can describe the behavior in the
transition zone by the set of ordinary differential equations (13.61) and (13.62) in the upstream part
and downstream part of the transition zone respectively. To recast the equations in dimensionless form
we proceed as in the previous section. Introducing in addition the dimensionless diffusivity

ε =
D

uinjL
, (13.47)

we obtain for the water and steam saturations

∂Sw

∂t
+
∂ufw

∂x
=
ρg

ρw
Λδ(x− vt) + ε

∂2Sw

∂x2
, (13.48)

∂Sg

∂t
+
∂ufg

∂x
= − Λδ(x− vt) + ε

∂2Sg

∂x2
, (13.49)

where again u and Λ satisfy (13.24). Here ε is a small number which we later send to zero. Using the
values from Table I we find as a typical value ε = 2.31 10−6.

Next consider the stretched moving coordinate (see also (13.7))

ξ =
x− vt

ε
. (13.50)

Regarding Sw and Sg as functions of ξ and t, we find instead of (13.48)–(13.49) the equations

ε
∂Sw

∂t
− v

∂Sw

∂ξ
+
∂ufw

∂ξ
=
ρg

ρw
Λδ(ξ) +

∂2Sw

∂ξ2
, (13.51)

ε
∂Sg

∂t
− v

∂Sg

∂ξ
+
∂ufg

∂ξ
= − Λδ(ξ) +

∂2Sg

∂ξ2
. (13.52)

For ε small, in fact letting ε ↓ 0, we find to leading order

Si(ξ, t) = Si(ξ) , i = w, g , (13.53)

where the travelling wave type transition saturations satisfy

−vdSw

dξ
+

dufw

dξ
=
ρg

ρw
Λδ(ξ) +

d2Sw

dξ2
, (13.54)

−vdSg

dξ
+

dufg

dξ
= − Λδ(ξ) +

d2Sg

dξ2
, (13.55)
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for −∞ < ξ <∞. These equations imply

−vSw + ufw =
ρg

ρw
ΛH(ξ) +

dSw

dξ
+ C1 , (13.56)

−vSg + ufg = − ΛH(ξ) +
dSg

dξ
+ C2 , (13.57)

where C1 and C2 are constants of integration. Because the base case temperature satisfies (13.8), we
find that the water and oil viscosity and hence the mobility ratios Mow and Mog have different values
for ξ > 0 and ξ < 0. This means that the fractional flow functions in equations (13.56) and (13.57)
also have a discontinuous ξ-dependence: fi = f r

i (Sw, Sg) for ξ > 0 and fi = f l
i (Sw, Sg) for ξ < 0.

We solve the transition saturation equations subject to the boundary conditions (13.46):

Sw(−∞) = S−
w , Sg(−∞) = S−

g (13.58)

and

Sw(+∞) = S+
w , Sg(+∞) = 0 . (13.59)

Letting ξ → ±∞ in (13.56) and (13.57) yields the Rankine–Hugoniot condition

(RH)

{
u+f+

w − vS+
w = ρg

ρw
Λ + f−w − vS−

w

0 = −Λ + f−g − vS−
g ,

(13.60)

where f−i = f l
i (S

−
w , S

−
g ), f+

w = f r
w(S+

w , S
+
g ) and v the shock speed.

We will formulate conditions, in addition to (13.37), (13.42) and (13.60), which enable us to select
a unique set of boundary values (13.58), (13.59). These conditions are related to the solvability
of the boundary value problem (13.56)–(13.59). To investigate this we consider two sub-problems.
Eliminating the constants C1 and C2 from equations (13.56) and (13.57), we consider for ξ < 0 the
boundary value problem

(Pl)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSw

dξ
= f l

w − vSw − (f−w − vS−
w ) ,

dSg

dξ
= f l

g − vSg − (f−g − vS−
g ) ,

Sw(−∞) = S−
w , Sw(0) = Sl

w ,

Sg(−∞) = S−
g , Sg(0) = Sl

g ,

(13.61)

and for ξ > 0

(Pr)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSw

dξ
= u+f r

w − vSw − (u+f+
w − vS+

w ) ,

dSg

dξ
= u+f r

g − vSg ,

Sw(+∞) = S+
w , Sw(0) = Sr

w ,

Sg(+∞) = 0 , Sg(0) = Sr
g ,

(13.62)
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where we have used that u+f+
g − vS+

g = 0. We need to find such boundary values S−
w , S−

g and S+
w ,

so that the subproblems (Pl) and (Pr) admit a solution with Sl
w = Sr

w and Sl
g = Sr

g. For that choice
we have continuous transition saturations that satisfy equations (13.56) and (13.57). Only if we make
the additional assumption (13.9) about the value of the steam saturation at the SCF, we find unique
values S−

w , S−
g and S+

w . This will be explained in the next section.

13.3.3 Matching Conditions

We first consider (Pl). To determine the nature of the equilibrium point (S−
w , S

−
g ) we compute the

eigenvalues ek (k=1,2) of the linearized system at that point. This yields

ek = λk − v , (13.63)

where λk are the eigenvalues of the Jacobian matrix Df , see (13.30). Consequently, if we take
(S−

w , S
−
g ) ∈ Dl, we find that e1 < e2 < 0. This means that no non-trivial orbit is possible that

ends up in (S−
w , S

−
g ) as ξ → −∞. Combining this information with (13.37) we find as remaining

possibility (S−
w , S

−
g ) ∈ l: in other words, the saturations at the upstream side of the SCF must satisfy

the condition

λ2(S−
w , S

−
g ) = v , (13.64)

implying that (S−
w , S

−
g ) is a non-hyperbolic saddle for problem 13.61 with e1 < e2 = 0. Given a

pair (S−
w , S

−
g ) satisfying this condition, we find the orbit that represents the solution of (Pl) by the

following shooting procedure. Let Sg(0) be the prescribed value of the steam saturation at the SCF.
We fix Sl

g = Sg(0) in (Pl) and take Sl
w as a shooting parameter: that is we solve the equations

in (Pl) by a fourth order Runge–Kutta procedure in negative ξ-direction with start values (Sl
w, S

l
g).

The corresponding orbit will deflect either to the left or to the right, see Figure 13.6 (top). Applying
the bisection method, one finds after a number of iterations an accurate approximation of the water
saturation at the origin Sw(0) = Sl

w for which a solution exists at the given values of S−
w , S

−
g and

Sg(0).
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Figure 13.6. Shooting procedure to solve (Pl). Here Sg(0) = 0 Top: flow diagram for (S−
w , S

−
g ) ∈ l. Bottom:

flow diagram for (S−
w , S

−
g ) ∈ Dl. The dots indicate the location of equilibrium points. The orbits

are pointing in negative ξ direction and ζ = −ξ
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At this point it is instructive to consider the dynamics of solutions in the saturation triangle more
closely. Because we solve the equations in the negative ξ-direction, we put

ζ = −ξ (13.65)

and consider the initial value problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dSw

dζ
= (f−w − vS−

w ) − f l
w + vSw ,

dSg

dζ
= (f−g − vS−

g ) − f l
g + vSg ,

Sw(0) = Sl
w , Sg(0) = Sl

g .

(13.66)

The qualitative behavior of orbits is determined by the location of equilibrium points and curves where
either dSw

dζ = 0 or dSg

dζ = 0. This is shown in Figure 13.6 for two locations of (S−
w , S

−
g ). In the top

figure we have chosen (S−
w , S

−
g ) ∈ l. The location of the curves where either dSw

dζ =0 or dSg

dζ =0
suggests the existence of only one equilibrium point being (S−

w , S
−
g ). Three orbits are shown in this

figure, all originating from the base line Sg = 0: one deflects to the left and one deflects to the right of
the equilibrium. The middle orbit approximates the solution that reaches (S−

w , S
−
g ) as ζ → ∞. In the

bottom figure we have chosen (S−
w , S

−
g ) ∈ Dl. The location of the separation curves now suggests the

existence of two equilibria: one inside Dl, being the chosen (S−
w , S

−
g ) and one outside Dl. Observe

from the sign conditions that no orbit can reach (S−
w , S

−
g ) as ζ → ∞. This corresponds to the earlier

observation about the negative sign of the eigenvalues of the linearized system near that point.

Let us now introduce the additional hypothesis (13.9), expressing that also in the transition zone the
steam saturation vanishes at the SCF:

Sg(0) = Sl
g = Sr

g = 0 . (13.67)

Using this assumption we propose the following procedure for (Pl). Choose S−
w , find the correspond-

ing S−
g so that (13.64) holds and apply the above described shooting procedure with (13.67) to find

the water saturation at the SCF. This yields Sl
w as a function of S−

w . With values taken from Table I,
we computed this function and the result is shown in Figure 13.7. Note that Sl

w depends continuously
and monotonically on S−

w and that Sl
w =0 whenever S−

w =0.

Next we consider (Pr). To prove existence of a continuous travelling wave we want to express the
water saturation just downstream the SCF in terms of S−

w as well, (curve Sr
w(1) in Figure 13.7). To es-

tablish this we first need to express S+
w in terms of S−

w . This we get by combining S+
g = 0, expression

(13.64) and the Rankine–Hugoniot condition (13.60). Computations show, see Figure 13.8, that given
any S−

w there are two possible values for S+
w . However, in view of (13.42), we must restrict ourselves

to the lower branch in Figure 13.8, which is a monotonically decreasing function of S−
w . Note that S∗

and S∗ vary slightly with S−
w . This dependence enters through u+.

How to obtain Sr
w(1) in Figure 13.7? As a result of (13.67) we find Sg(ξ) = 0 for all ξ � 0. Therefore

we only need to consider the Sw-equation in (Pr), where we use T = To in the coefficients. Writing
the water equation as

dSw

dξ
= Fw(Sw) = u+f r

w(Sw) − vSw − {u+f r
w(S+

w ) − vS+
w} , (13.68)
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Figure 13.7. Water saturation at the SCF as a function of S−
w . Curve Sr

w(1) is computed with the base case
temperature (13.8) in the transition zone. Curve Sr

w(2) is computed with temperature (13.14) in
the transition zone, see Section 13.4.2

one easily verifies, as a consequence of (13.42) and (13.44) that Fw(Sw) > 0 for Sw > S+
w and

Fw(Sw) < 0 for Sw < S+
w . This implies that the only solution possible is

Sw(ξ) = S+
w for all ξ � 0 . (13.69)

Consequently Sr
w = S+

w . Therefore the lower branch in Figure 13.8 also appears as Sr
w(1) in Figure

13.7. By the monotonicity of the curves we find exactly one intersection point at S−
w = S−

w (1). At this
point the values of Sl

w and Sr
w are the same, implying continuous water saturation in the transition

model. The corresponding values for S−
g , S

+
w and Λ are found from (13.64), Figure 13.7 and (13.60).

The result is:

S−
w = S−

w (1) = 0.1240 , S−
g = 0.5339 , S+

w = 0.2014 , Λ = 0.9856 , (13.70)

implying that the steam condensation rate r is approximately equal to the steam injection rate uinj.
The S+

w -value is such that downstream the SCF the solution of equation (13.40) consists of a shock
only. The composite solution as a path in the saturation-temperature space is shown as curve 1 in
Figure 13.9. Note that the transition saturations are monotone functions of ξ : Sg is decreasing, while
Sw is increasing. In Figure 13.10 we show the saturations as a function of η = x/t. This concludes
the analysis of the base case.
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Figure 13.8. Possible saturation combinations (S−
w , S

+
w ) satisfying the Rankine–Hugoniot conditions (13.60)

and condition (13.64)

Remark 13.2. The solution in the transition region defines a viscous profile for the hyperbolic problem
related to the base case. The constructed travelling wave connects the non-hyperbolic saddle at
(S−

w , S
−
g ), located on the curve l, and the point (S+

w , S
+
g = 0). This point is a saddle as well, because

the eigenvalues satisfy λ1 = 0 and λ2 > v. Hence e1 = −v < 0 and e2 > 0. Thus the saturation
shock at the SCF is a transitional shock in the sense of ISAACSON ET AL. [40].
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Figure 13.9. Composite solution as path in the phase-temperature space. Curve 1 reflects the base case, in
which the transition temperature is piecewise constant. Curve 2 reflects the continuously varying
temperature transition as given by (13.14). Here arrows on the three orbits are pointing in the
direction of the shooting procedures

Figure 13.10. Saturation distribution as a function of η = x/t
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13.4 Different Transition Models

In this section we investigate the relation between the transition model and the matching condition at
the SCF in the global interface model.

13.4.1 Brooks-Corey capillary pressure diffusion

To incorporate the capillary pressure expressions (13.10) into the mathematical formulation of the
base case, we start from Darcy’s law for the individual phases

ui = −kkri

µi

∂pi

∂x
, (13.71)

and use the definitions

P ow
c = po − pw , P go

c = pg − po , P gw
c = pg − pw , (13.72)

to eliminate the pressures from the phase velocities. This gives

uw = ufw + fwk
kro

µo

∂P ow
c

∂x
+ fwk

krg

µg

∂P gw
c

∂x
, (13.73a)

uo = ufo − fok
krw

µw

∂P ow
c

∂x
+ fok

krg

µg

∂P go
c

∂x
, (13.73b)

ug = ufg − fgk
kro

µo

∂P go
c

∂x
− fgk

krw

µw

∂P gw
c

∂x
, (13.73c)

where the total discharge u is given by (13.19) and the fractional flow functions fi by (13.17), with
power law relative permeabilities. Substituting these velocities into the phase balance equations and
eliminating, as before, the oil saturation yields the modified transition equations for Sw and Sg. As in
Section 13.3, we recast the equations in dimensionless form to obtain

∂Sw

∂t
+
∂ufw

∂x
=
ρg

ρw
Λδ(x− vt) − ε

∂

∂x

{
fw(kro + krgMog)

∂Jow

∂x
+ fwkrgMog

∂Jgo

∂x

}
, (13.74)

∂Sg

∂t
+
∂ufg

∂x
= − Λδ(x− vt) + ε

∂

∂x

{
fg(kro + krwMow)

∂Jgo

∂x
+ fgkrwMow

∂Jow

∂x

}
, (13.75)

where we have used P gw
c = P go

c + P ow
c and expressions 13.10 for P go

c and P ow
c . The Leverett

functions follow from (13.10) and (13.12) and the dimensionless number ε results from (13.47) and
(13.13):

ε =
D

uinjL
=

σ
√
φk

µouinjL
. (13.76)

Note that ε is related to the capillary number (capillary forces / viscous forces). Since we have
assumed that Jow = Jow(Sw) and Jog = Jog(Sg), we give equations (13.74) and (13.75) the more
convenient form

∂Sw

∂t
+
∂ufw

∂x
=
ρg

ρw
Λδ(x− vt) + ε

∂

∂x

{
Dww

∂Sw

∂x
+Dwg

∂Sg

∂x

}
, (13.77)

∂Sg

∂t
+
∂ufg

∂x
= − Λδ(x− vt) + ε

∂

∂x

{
Dgw

∂Sw

∂x
+Dgg

∂Sg

∂x

}
. (13.78)
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These equations replace the base case equations (13.48) and (13.49). We now proceed as in Section
(13.3.2). That is we introduce the scaled travelling wave coordinate ξ in equations (13.77) and (13.78)
and assume travelling wave type profiles for the solutions. Integrating the resulting ordinary differen-
tial equations and applying boundary conditions (13.58), (13.59) yields the same Rankine–Hugoniot
conditions as before. Instead of subproblems (Pl) and (Pr), we now obtain for ξ < 0

(Ql)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dl
ww

dSw

dξ
+Dl

wg

dSg

dξ
= f l

w − vSw − (f−w − vS−
w ) ,

Dl
gw

dSw

dξ
+Dl

gg

dSg

dξ
= f l

g − vSg − (f−g − vS−
g ) ,

Sw(−∞) = S−
w , Sw(0) = Sl

w ,

Sg(−∞) = S−
g , Sg(0) = 0 ,

(13.79)

and for ξ > 0

(Qr)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dr
ww

dSw

dξ
+Dr

wg

dSg

dξ
= u+f r

w − vSw − (u+f+
w − vS+

w ) ,

Dr
gw

dSw

dξ
+Dr

gg

dSg

dξ
= u+f r

g − vSg ,

Sw(+∞) = S+
w , Sw(0) = Sr

w ,

Sg(+∞) = 0 , Sg(0) = 0 ,

(13.80)

where we have used condition (13.67). The upper indices in the diffusion coefficients relate to the
temperature difference across the SCF. The properties of the nonlinear functions imply (for j = l, r)

Dj
ww,D

j
gg > 0 and Dj

wg,D
j
gw < 0 (13.81)

and

Dj
wwD

j
gg > Dj

wgD
j
gw (13.82)

in D. Because we are modifying only the transition model, conditions (13.37) and (13.42) remain
unchanged.

We first consider the solvability of (Ql). As in the base case the behavior of solutions depends crit-
ically on the location of the equilibrium point (S−

w , S
−
g ). Inequalities (13.81) and (13.82) imply that

the diffusion matrix is positive definite. This means that the number and location of equilibrium points
in (Ql) and (Pl) are identical. Of course the curves where dSw/dξ =0 and dSg/dξ =0 are different.
Two typical cases are shown in Figure 13.11, where we introduced again the variable ζ = −ξ (i.e. we
computed orbits in the positive ζ direction).
As in the base case, equilibrium points (S−

w , S
−
g ) ∈ Dl (bottom figure) cannot be reached. What

remains is again the possibility (S−
w , S

−
g ) ∈ l. Selecting points on the curve l, corresponding initial

points Sl
w were found numerically yielding a dependence which closely resembles the one shown

in Figure 13.7. Observe from Figure 13.11 that now the water saturation in the transition region is
not monotone: in the direction of negative ξ it first increases, reaches a global maximum and then
decreases towards S−

w at ξ = −∞.
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Figure 13.11. Shooting procedure to solve (Ql). Here Sg(0) = 0 Top: flow diagram for (S−
w , S

−
g ) ∈ l.

Bottom: flow diagram for (S−
w , S

−
g ) ∈ Dl. The dots indicate the location of equilibrium points.

Again ζ = −ξ
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We established computationally that solutions of (Qr) satisfy dSg/dζ > 0 for Sg close to zero.
Together with the boundary conditions this implies Sg(ξ) = 0 for all ξ � 0. A similar argument as
in Section 13.3.3 gives here again Sw(ξ) = S+

w for all ξ � 0. We then apply the procedure outlined
in Section 13.3.2 and find for different values of the sorting factor λs, as appearing in expressions
(13.12), different interface saturations. Corresponding to λs = 2 there results:

S−
w = 0.1452 , S−

g = 0.5467 , S+
w = 0.1990 , Λ = 0.9855 . (13.83)

13.4.2 Temperature variation

Next we modify the temperature distribution in the transition model. Instead of the discontinuous
temperature (13.8), we will now investigate the consequence of the continuous expression (13.14).
Clearly this modification leaves the transition model for ξ < 0 unchanged. In particular conditions
(13.64) and (13.42), the Rankine–Hugoniot conditions (13.60) and the results for problem (Pl), with
Sg(0) = 0, are the same as in the base case. Thus with reference to Figure 13.7, we use the same Sl

w

curve.

The only change occurs in (Pr) where now the temperature variation with ξ enters in the fractional
flow functions (f r

i = fi(Sw, Sg, T (ξ)) through the mobility ratios. This dependence has no conse-
quence for the steam saturation downstream the SCF. Since u+f r

g − vSg < 0 for small positive values
of Sg, the only possible solution satisfying the Sg- equation and boundary conditions is Sg(ξ)=0 for
all ξ � 0. What remains is the Sw- equation

dSw

dξ
= u+fw(Sw, T (ξ)) − vSw − (u+f+

w − vS+
w ) (13.84)

for ξ > 0. Using the exponential relation in (13.14), we write this equation with the temperature as
independent variable

dSw

dT
=
u+fw(Sw, T ) − vSw − (u+f+

w − vS+
w )

−α(T − To)
(13.85)

with To < T < T1. The corresponding boundary conditions are

Sw(To) = S+
w and Sw(T1) = Sr

w . (13.86)

Because (To, S
+
w ) is a singular point of equation (13.85), we solve it backwards in T. Thus given a

value for S+
w , we start at T = T1 and use the iterative shooting method again to obtain an accurate

approximation to the corresponding values for Sr
w.

In particular we find for any given S−
w , which yields a unique S+

w from Figure 13.8, a unique water
saturation at the right side of the SCF. This saturation, which is denoted by Sr

w(2) in Figure 13.7,
depends also monotonically on S−

w . Consequently there is again exactly one intersection point at S−
w

= S−
w (2). As before the values for S−

g , S
+
w and Λ are found from (13.64), Figure 13.7 and (13.60):

S−
w = S−

w (2) = 0.1288 , S−
g = 0.5337 , S+

w = 0.2010 , Λ = 0.9856 . (13.87)

The composite solution as a path in the saturation-temperature space is shown as curve 2 in Figure
13.9. Note the significant change in the transition region, in particular the striking non-monotonicity
of Sw, but the minor change in the hyperbolic part of the path, i.e. the outer solution.
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13.4.3 Positive steam saturation at SCF

Finally we modify the base case by replacing condition (13.67). Now we assign a positive value Sg(0)
to the steam saturation at the SCF. This does not involve conditions (13.64), (13.42) and (13.60), which
therefore remain unchanged here. To find the saturations in the transition region, we now have to solve
subproblems (Pl) and (Pr) subject to Sl

g = Sr
r = Sg(0) > 0. With reference to Figure 13.12, we

apply iterative shooting procedures starting from the line Sg = Sg(0): problem (Pl) is solved back-
wards in ξ (or as before, in positive ζ = −ξ direction) and (Pr) is solved forwards in ξ.

Given S−
w , we first determine S+

w from Figure 13.8 and then solve (Pl) and (Pr) repeatedly to obtain
accurate approximations for Sl

w and Sr
w. Again this leads to two monotone curves: Sl

w is increasing
and Sr

w is decreasing with respect to S−
w . The unique intersection point gives the required value for

S−
w . The saturations S−

g and S+
w , and the condensation rate Λ follow as before. Corresponding to

Sg(0) = 0.035, the result is:

S−
w = 0.1237 , S−

g = 0.5339 , S+
w = 0.2015 , Λ = 0.9856 . (13.88)

Given the parameter values in Table II, one cannot obtain a solution for significant larger Sg(0) values.
This follows from the sign of the right side of the gas equation in (Pr). Taking Sw = 0.2 in u+f r

g −
vSg, one finds that this expression is negative for 0 < Sg < 0.04 and positive for larger Sg values.
Hence, only when Sg(0) is taken in this range a decreasing gas saturation can be constructed. This
limitation is a direct consequence of the large viscosity ratio Mog

13.5 Parameter variation

Besides the mathematical context, the solutions constructed in Sections 13.3 and 13.4 are of interest
to petroleum engineers, because they can be used to

1. interpret one dimensional tube experiments;

2. validate thermal simulators for steamdrive;

3. quantify the influence of reservoir and rock properties.

In this section we focus on the parameter dependence, which we investigate for the average oil satura-
tion in the steam zone S̄o. Integrating the mass balance for oil, this quantity can be expressed directly
in terms of the upstream saturations at the SCF. These saturations result directly from our analysis.
As in DAKE [19] and DULLIEN [20] we find

S̄o = S−
o − u

v
fo(S−

w , S
−
g ) . (13.89)

Now given a set of model parameters, we compute S−
w , S−

g and S−
o as explained in this chapter. This

analysis, however, is rather involved and it would be desirable to find the upstream saturations by
means of a relatively straightforward approximation. With reference to Figures 13.6, 13.9, 13.11 and
13.12 it seems natural to choose the minimum of the curve l for that purpose. Denoting this point
by (Smin

w , Smin
g , Smin

o ) we then have that Smin
w and Smin

g satisfy (13.64) for the smallest possible gas
saturation. Using these values in (13.89) yields S̄min

o as the approximate average oil saturation in the
steam zone.
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Figure 13.12. Orbits in the saturation space, starting with a positive value of the steam saturation at the SCF,
Sg(0) > 0

In the parameter variation we change each time only one parameter in Table I. Instead of Table II, we
will use here three phase permeabilities. These are obtained by combining Corey two phase relative
permeabilities and the modified Stone I method, see FAYERS & MATTHEWS [23]. In full dimensional
form they read

krw = krw(Sw) = k
′
rwS

2+3λs
λs

we ,

krg = krg(Sg) = k
′
rgS

2
ge

(
1 − (1 − Sge)

2+λs
λs

)
,

kro = kro(Sw, Sg) =
So

krcow(1 − Sw)(1 − Sge)
krowkrog .

Here

Swe =
Sw − Swc

1 − Swc
, Sge =

Sg

1 − Swc

and

krow = k
′
rg(1 − Swe)2

(
1 − S

2+λs
λs

we

)
, krog = k

′
rw(1 − Sge)

2+3λs
λs .

We use k
′
rw=0.5 for the end-point permeability of the wetting phase at residual non-wetting phase

saturation and k
′
rg=1.0 for the end-point permeability of the non-wetting phase at connate wetting
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phase saturation. Finally we set krcow = 1. To describe the effect of oil film flow (oil may spread on
water in the presence of steam), the expressions for krow and krog are different from the ones proposed
by FAYERS & MATTHEWS [23].

Figure 13.13. Comparison of average oil saturation calculated from full computations and calculated with the
”approximate minimum condition”

Obviously these permeabilities change the nature of the Jacobian matrix (13.29), and in particular of
its eigenvalues. They may become complex, yielding an elliptic region in the saturation triangle, see
GUZMÁN & FAYERS [32]. However for our parameter choice, i.e. the large Mog, the small elliptic
region is situated near the Sg = 0 axis and plays no role in the analysis.

We show the computational results in Figure 13.13. The vertical axis gives S̄o, as established with the
procedure outlined in Sections 13.3 and 13.4. The horizontal axis shows the “minimum”approximation
S̄min

o . Line d in Figure 13.13 shows results for various cold oil viscosities in the medium viscosity
range, i.e. between 0.09-0.36 [Pa s], using a saturation independent capillary diffusion. Observe that
the result is nearly parallel and fairly close to the S̄o = S̄min

o line. As to be expected, an increasing oil
viscosity leads to a deteriorating displacement efficiency with an increasing oil saturation in the steam
zone. In all other cases shown in Figure 13.13, we use Brooks–Corey capillary diffusion. Along line a
we vary again the viscosity as for line d. Note the significant differences caused by the different cap-
illary behavior in the transition zone. Along line c we vary the sorting factor λs. This affects both the
relative permeabilities and the capillary diffusion. Observe that the deviation from the S̄o = S̄min

o line
decreases with λs. For reasons of practical interest we also show the effect of different pressures. The
steam pressure is not explicit in our equations but affects a number of parameters in Table I. We use
empirical relations given by TORTIKE & FAROUQ ALI [71] to represent the steam tables. The pressure
clearly determines the (boiling) temperature. It also has a small effect on the enthalpy for the con-
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version of cold water to hot steam (∆H). Therefore the steam condensation front velocity decreases
at higher pressures, see (13.4). Through its influence on temperature, a high pressure enhances the
steam viscosity and lowers the liquid viscosities. Direct pressure effects on viscosities are negligible.
The pressure range is between 10 and 100 bar. Indeed the displacement efficiency improves with
increasing pressure. Note that this occurs at the expense of a much higher mass of injected steam per
unit volume of recovered oil, because higher temperatures are involved now; the reservoir must be
heated to a higher temperature.

13.6 Conclusions

Based on the results of this chapter we conclude the following:

• The steamdrive model considered in this chapter gives a transitional shock wave at the steam
condensation front.

• As a consequence, the shock conditions at the steam condensation front inherit details of the
local parabolic transition model.

• The presence of steam in the downstream part of the transition zone has no significant effect on
the results.

• The rate of temperature decline has no significant effect outside the transition zone, i.e. in the
hyperbolic limit.

• The effect of Brooks–Corey capillary diffusion instead of constant (saturation independent)
capillary diffusion is well noticeable and cannot be disregarded.

• An approximate solution is given, based on the minimum of the l-curve in domain D. The
validity of this approximation can be checked from Figure 13.13 for different values of the
model parameters.

• The water saturation is significantly non-monotone when considering a continuous temperature
decline in the transition region (Figure 13.9). The maximum does not depend on the small
parameter ε and persists in the hyperbolic limit.
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14 Exercises

1. Consider the equation
ut + (f(u))x = νuxx in Q ,

where f ∈ C2(IR), f ′′ > 0 and ν > 0. Show that a travelling wave solution u(x, t) = w(η), with
η=x−ct and w(−∞)=ul, w(+∞)=ur, exists if and only if ul>ur.

2. Consider the nonlinear convection-diffusion equation{
ut +

(
f(u)

)
x

= ν
(
D(u)ux

)
x

0 � u � 1
in Q ,

where f : [0, 1] → IR is smooth and strictly convex, ν>0 and where D : [0, 1] → [0,∞) is given by

D(u) = uα(1 − u)β for 0 � u � 1 ,

with α, β>0.

(i) Show that a travelling wave exists if and only if 0�ur �ul�1;

(ii) Investigate the wave profile for the cases:

• 0<ur<ul<1;

• 0=ur<ul<1;

• 0<ur<ul =1;

• 0=ur<ul =1.

3. The single hump solution for the Burgers equation (Section 1.2) results in the problem⎧⎪⎨⎪⎩
−ηϕ+ ϕ2 = 2νϕ′ +A for −∞ < η <∞ ,

lim
|η|→∞

η ϕ(η) = 0 ,
∫

IR
ϕ(η)dη = M ,

where A is a constant of integration. Show that A=0.

4. Derive expression (1.11).
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5. Proof Proposition 2.17.

6. Averaging gravity induced fingers in porous media flow results in the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
− Γ

∂

∂z
ρ(1 − ρ) = 0 for − a < z < a, t > 0 ,

ρ(z, 0) =

{
1 as 0 < z < a ;
0 as − a < z < 0 ,

ρ(1 − ρ) = 0 at z = ±a, t > 0 (zero flux) .

Here ρ denotes the averaged fluid density and Γ, a are positive constants. Determine the solution by
the method of characteristics. Show that a conversion time T >0 exists such that

ρ(z, t) =

{
0 as 0 < z < a , t > T ,

1 as − a < z < 0 , t > T .

7. The transport of a reactive solute in a porous column, undergoing non-equilibrium adsorption, is
described by the coupled system (e.g. VAN DUIJN & KNABNER [76, 77])

∂

∂t
(u+ v) + q

∂u

∂x
= 0 , (14.1a)

∂v

∂t
= k{ϕ(u) − v} , (14.1b)

where −∞<x<∞ and t> 0. Here u denotes the concentration of the chemical species in the fluid
and v the concentration adsorbed on the porous matrix. Further, q > 0 is the averaged fluid velocity
and k>0 the reaction rate constant. Finally, ϕ : [0,∞)→ [0,∞) is the adsorption isotherm satisfying

ϕ ∈ C∞((0,∞)) ∩C([0,∞)) ,
ϕ(0) = 0 ,
ϕ′(s) > 0 , ϕ′′(s) < 0 for s > 0 .

(i) Show that travelling wave solutions exist satisfying

u(−∞, t) = ul > 0 , u(+∞, t) = 0 ,
v(−∞, t) = vl := ϕ(ul) , v(+∞, t) = 0 ,

for all t>0;

(ii) Compute the travelling waves for the Freundlich isotherm, when ϕ(u)=up, 0<p<1;

(iii) Study the limit k→∞ (equilibrium adsorption);

(iv) Are travelling waves possible when vl �=ϕ(ul) ?

8. Letting k→∞ in (14.1a), (14.1b) results in the reduced problem

∂

∂t
(u+ ϕ(u)) + q

∂u

∂x
= 0 for −∞ < x <∞ , t > 0 , (14.2)

describing the transport of a solute undergoing fast or equilibrium adsorption.
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(i) Determine the solution of the Riemann problem with

u(x, 0) =

{
ul � 0 as x < 0 ,
ur � 0 as x > 0 ;

(ii) What is wrong in the following steps:

(14.2) ⇒ (
1 + ϕ′(u)

)∂u
∂t

+ q
∂u

∂x
= 0 ⇒

⇒ ∂u

∂t
+

q

1 + ϕ′(u)
∂u

∂x
= 0 ⇒ ∂u

∂t
+ q

∂f(u)
∂x

= 0 , (14.3)

with f(u) =
∫ u

0

1
1+ϕ′(s)

ds. Compare the solutions of the Riemann problems (ul >ur) for

(14.2) and (14.3).

9. Buckley–Leverett with gravity

(i) Include gravity in the two-phase water-oil flow as presented in the Appendix. Show that the
water saturation now satisfies

Φ
∂Sw

∂t
+

∂

∂z

⎧⎪⎪⎨⎪⎪⎩
kw

µw

ko

µo

kw

µw
+
ko

µo

q − (γw − γo)

kw

µw

ko

µo

kw

µw
+
ko

µw

⎫⎪⎪⎬⎪⎪⎭ = 0 , (14.4)

Here z denotes the vertical coordinate, pointing upwards against the direction of gravity.

(ii) Setting

S :=
Sw − Swc

1 − Swc − Sw
, kw = kS2 , ko = k(1 − S)2 ,

show that (14.4) can be put in the dimensionless form

∂S

∂t
+

∂

∂z
{fw(S) −NgH(S)} = 0 , (14.5)

where

fw(S) =
MS2

(1 − S)2 +MS2
, M =

µo

µw
;

H(S) = (1 − S)2fw(S) ;

Ng =
(γw − γo)k

qµw
(gravity number) .

Note that the flux

F (S) := fw(S) −NgH(S)

is non-monotone for Ng>1.
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(iii) Let Ng>1. Solve the Riemann problem for (14.5) with

S(z, 0) =

{
1 as z < 0
0 as z > 0

and S(z, 0) =

{
0 as z < 0 ,
1 as z > 0 .

10. Consider Proposition 3.3 and Corollary 3.4. Suppose s+(t) is differentiable for some t0 > T
(waiting time). Show that ṡ+(t0)>0.

11. Determine the large time behaviour of the unique entropy solution of the initial value problem⎧⎪⎨⎪⎩
∂u

∂t
+
∂f(u)
∂x

= 0 in Q ,

u(·, 0) = u0(·) on IR ,

where f ∈C2(IR), f ′′>0 on IR and f ′′(0)=k>0. Consider the cases:

u0 u0 u0

x x x

∫
IR

u0(x)dx > 0

∫
IR

u0(x)dx < 0

∫
IR

u0(x)dx = 0

12. Find the entropy solution of the Riemann problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u

∂t
+

∂

∂x

(
a(x)

u2

2

)
= 0 in Q ,

u(x, 0) =

{
ul as x < 0 ,
ur as x > 0 ,

where

a(x) =

{
al as x < 0 ,
ar as x > 0 .

13. Let uε∈C∞(Q)∩L∞(Q) satisfy⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
+
∂f(u)
∂x

= ε
∂2u

∂x2
in Q ,

∂u

∂x
(x, ·) → 0 in Cloc([0,∞)) as |x| → ∞ ,

where f ′′�µ in IR. Show that

∂uε

∂x
� 1
µt

in Q (entropy inequality) .

Hint: Consider the equation for vε :=
∂uε

∂x
and construct a supersolution.
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14. Transform (7.20) into the standard form (7.21).

15. Show that the unique solution of the Riemann problem (9.1) must be of the form u(x, t)=u(x/t)
in Q.

16. Consider the shallow water equations (7.10) and let

(z, v)(x, 0) =

{
(zl, vl) as x < 0 ,
(zr, vr) as x > 0 .

Find the entropy solutions for the cases

(i) zl =zr, vl>vr;

(ii) zl>zr, vl =vr;

(iii) zl =zr, −vl=vr>0.

17. Three phase flow of oil, water and gas in a porous medium results in the system⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
+
∂f(u, v)
∂x

= 0

∂v

∂t
+
∂g(u, v)
∂x

= 0

in Q ,

with

f(u, v) =
Mowu

2

Mowu2 + (1 − u− v)2 +Mogv2
,

g(u, v) =
Mogv

2

Mowu2 + (1 − u− v)2 +Mogv2
,

Mow, Mog > 0 (mobility ratios) .

Here u�0, v�0 denote, respectively, the water, gas saturations, satisfying u+v�1. Hence solutions
are restricted to the saturation triangle D :={(u, v) :u, v�0 and u+v�1}.

(i) Show that the eigenvalues λ1, λ2 are real in D.

(ii) Show that λ1<λ2 in D, except at the three vertices of D and at one interior point.

Remark 14.1. Points where λ1 = λ2 are called umbilic points. They may result in a disconnected
Hugoniot locus as shown by ISAACSON ET AL. [41].

18. Consider the simplified three phase system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u

∂t
+
∂f(u, v)
∂x

= 0 ,

∂v

∂t
+
∂g(v)
∂x

= 0 ,

in Q ,
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with

f(u, v) =
u

1 + (α− 1)v
and g(v) =

αv

1 + (α− 1)v
,

and α>1. Follow the steps of Chapter 9 to solve the Riemann problem (in D) with:

(u, v)(x, 0) =

{
(ul, vl) as x < 0 ,
(ur, vr) as x > 0 .

In other words:

(i) Determine the eigenvalues and eigenvectors of the associated Jacobian matrix.

(ii) Determine the Hugoniot locus for a typical state in D.

(iii) Which shocks are admissible ?

(iv) Determine the rarefactions in D.

(v) Complete the construction of an admissible solution.
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Hugoniot locus, 90
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Lax entropy inequalities, 94
Lax- scheme, 48
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material derivative, 74
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numerical dispersion, 49
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porous media equation, 132
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umbilic point, 141
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