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Vadose Zone Journal | Advancing Critical Zone Science

The Effect of Dynamic Capillarity  
in Modeling Saturation Overshoot 
during Infiltration
Luwen Zhuang,* C.J. van Duijn, and S. Majid Hassanizadeh
Gravity-driven fingering has been observed during downward infiltration of water 
into dry sand. Moreover, the water saturation profile within each finger is non-
monotonic, with a saturation overshoot at the finger tip. As reported in the literature, 
these effects can be simulated by an extended form of the Richards equation, where 
a dynamic capillarity term is included. The coefficient of proportionality is called 
the dynamic capillarity coefficient. The dynamic capillarity coefficient may depend 
on saturation. However, there is no consensus on the form of this dependence. We 
provide a detailed traveling wave analysis of four distinctly different functional 
forms of the dynamic capillarity coefficient. In some forms, the coefficient increases 
with increasing saturation, and in some forms, it decreases. For each form, we have 
found an explicit expression for the maximum value of saturation in the overshoot 
region. In current formulations of dynamic capillarity, if the value of the capillarity 
coefficient is large, the value of saturation in the overshoot region may exceed unity, 
which is obviously nonphysical. So, we have been able to ensure boundedness of 
saturation regardless of the value of the dynamic capillarity coefficient by extend-
ing the capillary pressure–saturation relationship. Finally, we provide a qualitative 
comparison of the results of traveling wave analysis with experimental observations.

Abbreviations: TW, traveling wave.

Traditionally, in two-phase flow systems, the difference between the non-
wetting-phase pressure and the wetting-phase pressure is assumed to be equivalent to the 
capillary pressure. The relationship between capillary pressure and water saturation is fun-
damental for the characterization of unsaturated flow in porous media. Traditionally, this 
relationship is assumed to be independent of flow rates. However, it has been reported that 
the relation between the fluid pressure difference and water saturation during dynamic 
processes differs from that under static conditions (see e.g., Topp and Peters, 1967; Smiles 
et al., 1971; Vachaud and Thony, 1971; Elzeftawy and Mansell, 1975; Stauffer, 1978; 
Wildenschild et al., 2001; O’Carroll et al., 2005). Stauffer (1978) proposed to define a 
dynamic capillary pressure in addition to the standard static capillary pressure. Through 
experimental studies, he found that the difference between dynamic and static capillary 
pressure depends linearly on the temporal rate of change of saturation.

Following Hassanizadeh and Gray (1990) and Kalaydjian (1987), we choose a differ-
ent conceptual approach. According to this approach, there is only one capillary pressure 
and that is the one measured under quasi-static conditions. What is measured under 
dynamic conditions is not capillary pressure but the difference between the two fluid 
pressures. Based on a thermodynamic approach, they showed that the difference in fluid 
phase pressures under dynamic conditions is not just equal to the standard capillary pres-
sure but includes a dynamic term dependent on the temporal rate of saturation change. A 
linearized approximation was proposed by Hassanizadeh and Gray (1993) as

w
n w cw Sp p p

t
¶

- = -t
¶

  [1]

where pn [M L−1 T2] and pw [M L−1 T2] are non-wetting- and wetting-phase pressures, respec-
tively, and pcw [M L−1 T2] is the capillary pressure. It is obtained as the difference between 
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non-wetting and wetting pressures under quasi-static conditions. 
Further, Sw (dimensionless) is the wetting-phase saturation, and t 
[M L−1 T] is a nonequilibrium (or dynamic) capillarity coefficient. 
Recent studies have suggested that the dynamic coefficient t varies 
with saturation (Dahle et al., 2005; Manthey et al., 2005; Camps-
Roach et al., 2010; Joekar-Niasar et al., 2010; Goel and O’Carroll, 
2011; Bottero et al., 2011). Comprehensive reviews on experimental 
and numerical research related to the effect of dynamic capillarity 
were given by Hassanizadeh et al. (2002), Diamantopoulos and 
Durner (2012), and Joekar-Niasar and Hassanizadeh (2012).

A number of studies have quantified the value of the dynamic 
capillarity coefficient t at different saturation values, but the 
functional relationship between saturation and t is still unclear. 
Different studies have produced different or even contradictory 
trends. In laboratory experiments with sand columns, Oung et al. 
(2005) and Bottero et al. (2011) found that the variation of t with 
saturation was not significant. However, some other experimental 
studies have shown that the value of t generally decreases with 
increasing saturation. Rapid primary drainage experiments done in 
a water–tetrachloroethylene (PCE) porous system (Hassanizadeh 
et al., 2004; Bottero et al., 2006; Das and Mirzaei, 2012) and in an 
air–water porous system (Sakaki et al., 2010; Goel and O’Carroll, 
2011) have shown that t varies as a logarithmic function of the 
inverse of saturation in the range 0.4 < Sw < 1. Further, O’Carroll 
et al. (2005, 2010) determined the value of t through inverse mod-
eling of multistep outflow PCE–water experiments and proposed a 
linear relationship with the inverse of saturation. A similar decreas-
ing t–Sw relationship has been reported in various numerical 
studies based on both pore-scale (Dahle et al., 2005; Gielen, 2007; 
Joekar-Niasar and Hassanizadeh, 2011) and continuum-scale simu-
lations (Manthey et al., 2005; Berentsen et al., 2006; Mirzaei and 
Das, 2007; Fučík et al., 2010). A totally opposite trend was found 
by Camps-Roach et al. (2010) and Sakaki et al. (2010), who did 
primary drainage and main imbibition experiments, respectively. 
They reported that t increases with increasing saturation.

Addition of the dynamic capillarity Eq. [1] to the standard 
equations for two-phase f low (or unsaturated f low) leads to a 
totally different mathematical model. While standard equations 
are known to be unconditionally stable and give monotonic satura-
tion profiles (Egorov et al., 2002), the dynamic capillarity model 
has shown to be conditionally unstable and may result in non-
monotonic saturation profiles (Egorov et al., 2002; van Duijn et al., 
2004). There are only a few works on mathematical analysis of the 
dynamic capillarity effect. Moreover, most of them have consid-
ered a constant value for t (see, e.g., Cuesta and Hulshof, 2003; van 
Duijn et al., 2007, 2013; Rätz and Schweizer, 2014; Cao and Pop, 
2016; Zhang and Zegeling, 2017). Nieber et al. (2005) and Sander 
et al. (2008) analyzed unsaturated flow equations including the 
dynamic capillarity term for a non-monotonic t–Sw relationship, 
which goes to infinity when Sw is close to 0 and 1.

As explained above, the form of the t–Sw function is not 
clearly determined yet. The solution of governing equations will 
certainly be affected by such a functional relationship. Therefore, 

it would be extremely useful to know how the solution of equa-
tions will change with the various forms of the dependence of t on 
saturation. This will be helpful in analyzing experimental results 
and finding the correct form of the t–Sw relationship.

In this work, we analyze and discuss the effect of the dynamic 
capillarity coefficient on saturation (overshoot) in the unsaturated 
flow model. We consider as examples four different relationships 
between t and Sw, and show how saturation is affected by them. 
The current formulation of the dynamic capillarity model does 
not guarantee that the saturation overshoot will not exceed unity 
for large values of t. Therefore, we extended the capillary pres-
sure–saturation relationship to ensure that the saturation value 
does not exceed unity regardless of the t value. Also, we have found 
an explicit expression for the maximum value of saturation in the 
overshoot region. Finally, we evaluate the results of the travel-
ing wave analysis with the aid of experimental observations. We 
emphasize that our aim is not to simulate specific experiments. To 
do so, more information and additional effects have to be included, 
such as hysteresis in capillary and relative permeability.

 6Experimental Observations
Gravity-driven fingering in unsaturated porous media has 

been observed experimentally and simulated numerically in many 
studies (e.g., Baker and Hillel, 1990; Wang et al., 2004; DiCarlo, 
2007; Chapwanya and Stockie, 2010). Comprehensive reviews 
of theories, models, and experiments have been performed by 
DiCarlo (2013) and Xiong (2014).

Among these, several experiments have reported that a char-
acteristic saturation overshoot occurred at the tip of each finger 
(DiCarlo, 2004; Fritz, 2012), as well as non-monotonic water pres-
sure profiles (Stonestrom and Akstin, 1994; DiCarlo, 2007). Here 
we show two sets of typical experimental results during gravity-
driven fingering flow.

DiCarlo (2004) performed a series of one-dimensional water 
infiltration experiments with dry clean sand (Sw » 0). The experi-
ments were done at six different water flow rates. Water saturation 
distributions along the domain were measured using the light 
transmission method. Figure 1 shows the water saturation profiles 
obtained at different water flow rates. As shown, the saturation pro-
files are monotonic at the highest (11.8 cm/min) and the lowest (8 ́  
10−4 cm/min) inflow rates, while there exists saturation overshoot 
for all other inflow rates. The overshoot becomes higher and wider 
with increasing inflow rate, except for the highest inflow rate.

Fritz (2012) conducted gravity-driven infiltration experi-
ments under different but uniform initial saturations. Saturation 
was measured at 20 cm from the inlet during all experiments. 
Figure 2 presents saturation breakthrough curves obtained under 
three different initial saturations for the same inflow rate (0.26 
cm/min). At higher values of initial saturation, the overshoot 
height decreased and even vanished for the largest initial satura-
tion. Obviously, both initial and boundary conditions influence 
the shape of saturation overshoot.
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In the following, we first report on analytical results of the 
traveling wave solutions concerning different forms of the dynamic 
capillarity coefficient. Then, we show calculations with different 
initial and boundary conditions, using the typical parameter values 
for sandy soil (i.e., reported by DiCarlo [2004] and Fritz [2012]). 
The parameters used in the calculations are summarized in Table 1.

 6Governing Equations
Consider a vertical column filled with homogeneous soil, 

having porosity f (dimensionless) and intrinsic permeability k [L2]. 
The one-dimensional continuity equation for the water phase is

( )rw w w
w 0

w k S k pS g
t x x

é ùæ ö¶¶ ¶ ê ú÷ç ÷çf + - -r =ê ú÷ç ÷÷ç¶ ¶ m ¶ê úè øê úë û

  [2]

with

( )a w cw wp p p S- =   [3]

where pa [M L−1 T2], k rw(Sw) (dimensionless), pw [M L−1 T2], and 
rw [M L−3] denote air pressure, relative permeability, water pres-
sure, and water density, respectively. Further, m [M L−1 T] is water 
viscosity, x [L] is the vertical coordinate (with positive direction 
pointing downward), t [T] is time, g [L T−2] is the gravitational 
constant, and f (dimensionless) is porosity. In Eq. [3], pcw(Sw) [M 
L−1 T2] is the capillary pressure, defined as the difference between 
air pressure and water pressure under equilibrium conditions.

In this study, we include the dynamic capillarity effect and 
replace Eq. [3] with Eq. [1]. In an air–water system, the result is

( ) ( )
w

a w cw w w w Sp p p S S
t

¶
- = -t

¶
  [4]

where tw(Sw) [M L−1 T] is the dynamic capillarity coefficient. It 
is a given function of the water saturation, whose influence we 
wish to study.

The air pressure is considered as a constant reference pressure. 
Hence it can be eliminated from Eq. [4] by redefining the water 
pressure pw. The van Genuchten–Mualem model (van Genuchten, 
1980) is used for the relationships describing capillary pressure and 
relative permeability in terms of water saturation:

( ) ( )1/cw w 1/
e

1
1

nmp S S-= -
a

  [5]
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where Se (dimensionless), Sa
r (dimensionless), and Sm = 1 − Sr

a 
(dimensionless) denote effective water saturation, residual air 

Fig. 1. Saturation profiles during infiltration for six different inflow 
rates q (cm/min) (DiCarlo, 2013).

Fig. 2. Saturation breakthrough curve at 20 cm at three different initial 
saturations with a flow rate of 0.26 cm/min (Fritz, 2012).

Table 1. The parameter values used in the calculations.

Parameters Value

Porosity (f) 0.4

Water density (rw), kg/m3 1 ´ 103

Water viscosity (mw), Pa s 1 ´ 10−3

Primary imbibition retention exponent n 2.58

Primary imbibition retention parameter a , 1/Pa 8.6 ´ 10−3

Residual air saturation (Sa
r) 0.05

Intrinsic permeability (k), m2 6.43 ´ 10−10

Inflow water flux (qT), cm/min 0.26
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saturation, and maximum water saturation, respectively; a [L−1] and 
n (dimensionless) are fitting parameters, and m = 1 − 1/n. We hint 
that because this study focuses on the effect of the saturation-depen-
dent coefficient tw = tw(Sw), we disregard any hysteresis in capillary 
pressure and relative permeability. For pcw(Sw) in Eq. [4], we use the 
capillary pressure–saturation relation for primary imbibition.

Nieber et al. (2005) proposed to include a pressure depen-
dence in t as well: in our notation t = t(Sw,pw). However, since the 
current study uses the analytical results of van Duijn et al. (2018), 
where t = t(Sw) only, we shall restrict ourselves to this case as well.

The problem that we study describes the injection of water 
into an infinitely long column {0 < x < ¥}. This column is ini-
tially filled with water and air such that the water saturation has a 
(small) constant value: Sw(x,0) = SB for all x > 0. At the top (x = 0), 
water is injected at the constant rate qT [L T−1]. Using Darcy’s law, 
the injection rate qT can be converted into a boundary saturation 
Sw(0,t) = ST satisfying

( )
w

rw
T T

gk
q k S

r
»

m
  [8]

This relation is expected to hold fairly soon after the injection starts.
For numerical purposes we truncate the column at a finite, 

but large, depth x = L. There we prescribe S(L,t) = SB for all t > 
0. The running terms t in Eq. [2] and the depth L are chosen so 
that the water distribution in the column is not influenced by the 
boundary condition at x = L.

 6Nondimensionalization of Equations
To discuss and compare the results of van Duijn et al. (2018) 

in terms of Eq. [2] and [4] and the boundary and initial conditions, 
we first need to make the problem dimensionless. For this purpose, 
characteristic values for length (xR), time (tR), pressure (pR), water 
flux (qR), and dynamic capillarity (tR) are introduced. With these 
values, we consider the dimensionless variables

( ) ( )cw wa w w
c w

D D D D
R R R R R

, , , ,
p Sp p qt xt x u p S q

t x p p q
-

= = = = =

(dimensionless water flux), and (dimensionless capillarity)

( )w w
w

D
R

( )
S

S
t

t =
t

  [9]

where u denotes the dimensionless pressure difference.
Substituting these scaled variables into Eq. [2] and [4] gives

( )
ww

rw wR
w

D R D DR

1 0Rgkt pS uk S
t x x xgx
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w
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Balancing terms in Eq. [10a] gives

w
R R

w
R R

1 and 1
gkt p

x gx
r

= =
fm r

  [11]

Because we use Eq. [5] for pcw, a natural choice for the char-
acteristic pressure is pR = 1/a (Pa). Using this in Eq. [11] yields

( )
R Rw 2w

1
 and x t

g g k

fm
= =

r a a r
 [12]

Using these expressions in Eq. [10] yields

( )
w

rw w
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1 0

S uk S
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where

( )2w

R

g kar
l= t

f
  [13c]

where l denotes the dimensionless capillarity coefficient. Note 
that the dimensional tR refers to the dynamic capillarity coeffi-
cient measured in experiments. Dependent on the setting, it takes 
values in the range 104 to 107 Pa s (Hassanizadeh et al., 2002).

The water flux in the column is given by Darcy’s law:

( )rw w w
w w

k S k p
q g

x

æ ö¶ ÷ç ÷ç=- -r ÷ç ÷÷çm ¶è ø
  [14]

Because its value is prescribed at the top, i.e., qw(0, t) = qT, the 
natural scaling is qR = qT. Now, making Eq. [14] dimensionless gives

( )
w

rw w
D

T D
1

gk uq k S
q x

æ ör ¶ ÷ç ÷= +ç ÷ç ÷çm ¶è ø

This results in the boundary condition

( )
D
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T
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1
x

uk S Q
x
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where

T
T w

q
Q

gk
m

=
r

  [16]

Dropping the subscript D from the notation and writing S = 
Sw and k(S) = k rw(Sw), we arrive at the following dimensionless 
formulation:

Find 0 < S £ Sm such that

( ) 1 0
S uk S
t x x

é ùæ ö¶ ¶ ¶ ÷çê ú+ + =÷ç ÷çê úè ø¶ ¶ ¶ë û
  [17a]

( ) ( )c Su p S S
t

¶
= -lt

¶
 [17b]

for x > 0 and t > 0, subject to the boundary condition

( ) T
0

1  for 0
x

uk S Q t
x =

æ ö¶ ÷ç + = >÷ç ÷çè ø¶   [17c]
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and the initial condition

( ) B,0  for 0S x S x= >   [17d]

where pc is the scaled version of Eq. [5] and k(S) is given by Eq. [6].
After some time, the saturation at the top of the column 

becomes constant in time. Its value, S = ST, follows from the 
dimensionless form of Eq. [8]:

( )T Tk S Q=   [18]

where k is given by Eq. [6]. Later, when discussing traveling wave 
solutions of Eq. [17a–17b], we use ST as the upstream limiting 
value. The initial value SB is the downstream limiting value.

It is known (see, e.g., Cuesta et al. [2000] or Nieber et al. 
[2005]) that due to the dynamic term in Eq. [17b], the value 
of the water saturation is not constrained. Large l values may 
lead to large saturation overshoot. To prevent the non-physical 
behavior where S > Sm, we need to extend the capillary pressure 
at S = Sm in a way that allows for negative u values (or pw > pa). 
Mathematically, this is achieved by considering a set-valued capil-
lary pressure at S = Sm:

( ) ( )
( ]

1/1/
c e m

m

1  for 

,0              at 

nmS S S
p S

S S

-ìïï - <ï=íïï -¥ =ïî

  [19]

Its dimensionless form is pc(S) = pcw(S)/pR (see Eq. [9]). As we 
demonstrate below, this extension ensures that, no matter how 
large the capillarity coefficient t(S), the resulting saturation 
cannot exceed S = Sm (see Fig. 3). Throughout this study, we 
use Eq. [19] for pc in Eq. [17b]. Suppose S = Sm in a region R as 
sketched in Fig. 4. Then clearly ¶S/¶t = 0 in R. Hence from Eq. 
[17b], u £ 0 in R and from Eq. [17a], ¶2u/¶x2 = 0 in R. This 
means that in regions where the saturation reaches its maximal 
value S = Sm, the pressure is hydrostatic.

The expression for l is given by Eq. [13c]. Its value is deter-
mined by the physical and experimental constants involved. We 
shall consider it as a free parameter.

Concerning the capillarity function t(S), we assume that it is 
positive and continuous in the interval 0 £ S < Sm and that it may 
have a singularity at S = Sm in the sense that

 ( )
mS

lim S
S®
t =¥

In fact (see van Duijn et al., 2018), we shall distinguish 
between two classes of possible t(S) functions:

( )m

0
d   (Class A)

S
S St <¥ò   [20a]

( )m

0
d   (Class B)

S
S St =¥ò   [20b]

Example: Let f (S) = (Sm − S)w for 0 < S < Sm with −¥ < w 
< +¥. Then

( )m
1
m

0

1
if 1

d 1
if 1

S S
f S S

+wìïï <¥ w>-ï= +wíïï¥ w£-ïî
ò

where f is integrable (Class A) if w > −1 (although f (S) has singular 
behavior as S ® Sm if −1 < w < 0) and f is non-integrable (Class B) 
if w £ −1.

The four t–S relations are given in Table 2 and plotted in 
Fig. 5. Example t2(S), where t2 decreases with S, corresponds 
to experimental results found in many references (see, e.g., 
Hassanizadeh et al., 2004; Manthey et al., 2005; Bottero et al., 
2006; Joekar-Niasar and Hassanizadeh, 2011; Das and Mirzaei, 
2012). Examples t3(S) and t4(S) follow trends found in Camps-
Roach et al. (2010) and Sakaki et al. (2010). Clearly t1, t2, and t3 
belong to Class A, while t4 belongs to Class B.

 6Numerical Solution of Flow Equations
Here we present the numerical solution of the dimensionless 

problem Eq. [17], with pc given by the extended version Eq. [19]. 
The parameters involved are the dimensionless capillarity constant 
l and the dimensionless inflow rate QT. The values of the underly-
ing relevant physical quantities are given in Table 1. Those values 
yield the dimensionless injection rate (see Eq. [16]):

Fig. 3. Graph of extended capillary pressure based on Eq. [19].
Fig. 4. Sketch of region R where saturation S = Sm, the maximum 
water saturation.
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3
T 6.7 10Q -= ´   [21]

This value of QT, based on Eq. [6] and [18], results in an 
upstream saturation ST value of 0.33. The values in Table 1 were 
taken from experiments performed by Fritz (2012). Although 
several other inflow rates were considered in the experiments, we 
regard the values from Table 1 as our base case.

We show the results of two sets of numerical experiments: 
one where t(S) = 1 and one where t(S) = 1/(1 − S/Sm). This cor-
responds to Cases 1 and 4 from Table 3. For each chosen t(S), we 
show numerical results for different values of l: l = 10, l = 50, 
and l = 100. In the experiments of Fritz (2012), the sand column 
was initially (almost) dry. In the numerical experiments, we took 
SB = 0.01 to avoid singular behavior of the capillary pressure. To 
avoid the multi-valuedness in Eq. [19], we replaced this expression 
in the computations by the approximation

( )
( )
( ) ( )

1/1/
m

c

c
m m m

1                        for  

1
  for  

nm
eS S S

p S
S S p S S S

-ìïï - £ -sïï=íïï -s- + -s > -sïïeî

 [22]

where e and s are small parameters: e = 1 ´ 10−6 and s = 1 ´ 10−3.

For numerical purposes, we truncate the column at a suf-
ficiently large dimensionless length, where we prescribe the 
boundary condition S = SB.

In solving the equations, we used the commercial software 
package COMSOL Multiphysics 5.0 (COMSOL, 2014). For the 
space–time discretization, we took Dx = 0.01 and Dtmax = 0.2. 
This resulted in mesh-independent solutions.

Figures 6, 7, and 8 show typical profiles of the computed sat-
uration. The observed behavior is explained by a traveling wave 
analysis given below. The dimensionless time in the figures was 
chosen so that the saturation front is sufficiently far from the top 
(x = 0) and from the truncated bottom (x = L).

From the figures, the following behavior can be observed:
1. Profiles move with fixed shape and speed through the column 

(see Fig. 6; traveling wave studied below).
2. When t(S) = 1 and l is sufficiently small, there are no oscilla-

tions, which corresponds to observations by Cuesta et al. (2000), 
Nieber et al. (2005), and Sander et al. (2008). Overshoot 
increases with l . When l is large, the saturation reaches its 
maximal value Sm. The influence of the extended pressure Eq. 
[19] gives a saturation plateau where S = Sm (see Fig. 7).

3. When t is singular at S = Sm as in Fig. 8, the plateau at S = Sm 
disappears, no matter how large l. This remarkable observation 
is explained below.

 6Traveling Wave Solution
Following up the numerical results, we consider here a special 

class of solutions of Eq. [17] and [19] having the form of traveling wave 
(TWs). They describe a situation where the saturation has reached a 
well-developed profile that moves through the column as a wave with 
a constant speed. Such solutions generally arise after longer times and 
are thus valid for long domains. These waves connect an upstream 
saturation (here equal to the inflow saturation ST, determined by Eq. 
[18]) to a downstream saturation state (here equal to the initial satura-
tion SB), where 0 < SB < ST < Sm.

Traveling wave solutions of Eq. [17] received considerable atten-
tion in the past. For instance, Cuesta et al. (2000) studied TWs 
in the interesting case of power law nonlinearities. They obtained 
existence, uniqueness, and non-monotonicity of solutions. Particular 
emphasis was on the behavior of solutions as SB ® 0. Later, Nieber 
et al. (2005) numerically evaluated TW solutions in a more general 

Fig. 5. Four different capillarity functions t(S), defined in Table 2, for 
saturations  S to the maximum saturation S m.

Table 2. Different expressions for the capillarity function t(S).

Dynamic capillarity function Expression†

t1(S) (constant) 1

t2(S) (decreasing) 1 − S/Sm

t3(S) (increasing) S/Sm

t4(S) (increasing and non-integrable) 1/(1 − S/Sm)

† S, saturation; Sm, maximum saturation.

Table 3. The values of the critical dynamic capillarity function lc for 
different capillarity functions t(S) using parameters in Table 1.

Dynamic capillarity function lc for ST = 0.33

t1(S) (constant) 21.8

t2(S) (decreasing) 33.4

t3(S) (increasing) 62.8

t4(S) (increasing and non-integrable) 14.2
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setting and investigated their stability. Recently, van Duijn et al. 
(2018) reported on analytical results concerning the dependence of 
TW solutions on the coefficient l and the function t(S) in Eq. [17b]. 
Here we essentially summarize their results. We will then interpret 
these findings in terms of their hydrological significance.

In mathematical terms, TWs are described by solutions of 
the form

( ) ( ) ( ) ( ),   and  ,S x t S u x t u= h = h  [23]

where h = x − ct. The unknowns are the saturation profile S(h), 
the pressure profile u(h), and the wave (or propagation) speed c. 
They are obtained from the corresponding equations and bound-
ary conditions. The boundary conditions for TWs are attained at 
h = ±¥ (i.e., x = ±¥) and are given by

( ) ( ) ( )

( ) ( ) ( )

c
T T

c
B B

, ,

and , ,

S u S p S

S u S p S

é ùé ù-¥ -¥ = ê úë û ë û
é ùé ù+¥ +¥ = ê úë û ë û

  [24]

Applying the traveling wave form to Eq. [17] and using 
the chain rule when differentiating, the ordinary differential 
equations are obtained:

( )d d d
1 0

d d d
S uc k S

é ùæ ö÷çê ú÷- + + =ç ÷ê úç ÷çh h hè øë û
  [25a]

( ) ( )c d
d

Su p S c S= +l t
h

  [25b]

where −¥ < h < ¥.
Equation [25a] can be integrated to give

( ) d
1

d
ucS k S C

æ ö÷ç ÷- + + =ç ÷ç ÷ç hè ø
  [26]

where C is a constant of integration. We evaluate this equation at 
h = ±¥ and apply the boundary conditions of Eq. [24]. Because 
the pressure difference u attains constant (but different) values 
at h = ±¥, we must have du/dh = 0 when h = ±¥. Using this 

in Eq. [26] gives

( )
( )

B B

T T

( )
( )

cS k S C
cS k S C

ìï- + = h=+¥ïíï- + = h=-¥ïî
  [27]

Solving these equations for c and C gives

( ) ( )T B

T B

k S k S
c

S S
-

=
-

  [28]

( ) ( )B T T B

T B

k S S k S S
C

S S
-

=
-

  [29]

Note that c is the well-known Rankine–Hugoniot speed (Renardy 
and Rogers, 2004).

Rearranging Eq. [25b] and substituting Eq. [28] and [29] into 
Eq. [26] yields the system of first-order equations

( )
( )

cd
d

u p SS
c S

-
=

h l t
  [30a]

Fig. 6. Saturation profiles with capillarity coefficient t(S) = 1 and dimension-
less capillarity coefficient l = 50 at three different times t1 = 7500, t2 = 8000, 
and t3 = 8500.

Fig. 7. Saturation profiles with capillarity coefficient t(S) = 1 at time t = 8000 for three different values of the dimensionless dynamic capillarity coef-
ficient l: (a) 10, (b) 50, and (c) 100.
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( )B T
d

; ,
d

u G S S S=
h

  [30b]

where

( )
( ) ( )

( )
B B

B T; , 1
k S c S S

G S S S
k S
+ -

= -   [31]

for 0 < S £ Sm.
The function G is shown in Fig. 9. The linear function in 

G, l(S) = k(SB) + c(S − SB), has two intersection points with the 
function k(S), i.e., points [SB,k(SB)] and [ST,k(ST)]. The perme-
ability k(S) < l(S) between the two points, whereas k(S) > l(S) 
when S < SB or S > ST. Therefore we have

( )
B T

B T B T

B T m

0  for 
; , 0  for ,

0  for 0 ,

S S S
G S S S S S S

S S S S S

ìï> < <ïïï= =íïïï< < < < £ïî

  [32]

The two equilibrium points corresponding to SB and ST 
(when the right-hand sides of Eq. [30] vanish) are

( ) ( )c c
B B B T T T,   and  ,E S p S E S p Sé ù é ù= =ê ú ê úë û ë û  [33]

These points correspond to the boundary condition Eq. [24].
A solution [S(h),u(h)], with −¥ < h < ¥, will be represented 

as a trajectory in the S–u plane. This trajectory connects the point 
ET, as h ® −¥, to the point EB, as h ® ¥.

Fig. 8. Saturation profiles with capillarity coefficient t(S) = 1/(1 − S/Sm) at time t = 8000 for three different values of dimensionless dynamic capillar-
ity coefficient l: (a) 10, (b) 50, and (c) 100.

Fig. 9. Graph of the function G(S; SB, ST), defined by Eq. [31], for a given SB < ST < Sm where SB = 0.1 and ST = 0.33 and where the upper saturation 
Sb is indicated by the boundary of the gray region (left), and graph of the integral b(SB,ST), defined by Eq. [35], as a function of ST for SB = 0.1 where 
the special saturation ST* = ST*(SB) is indicated and both Sb and b(SB,ST) correspond to capillarity coefficient t(S) = 1 (right).
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For the construction of a connecting trajectory (i.e., solu-
tion), it is important to know the nature of the equilibrium points. 
Linearizing the system of Eq. [30]) at ET and EB and computing 
the eigenvalues of the resulting matrices produces the following 
(e.g., Cuesta et al., 2000):

( )B  is a saddle positive and negative eigenvaluesE   [34a]

c

T
c

an  unstable node when <  
                                   (positive real eigenvalues)

 is 
an  unstable spiral when >

(complex eigenvalues with positive real part)

E

ì l lïïïïïïíï l lïïïïïî

 [34b]

The critical l value is given by (e.g., Cuesta et al., 2000)

( )

( ) ( )

2
c

T

c
T T B T4 ; ,

p S

c S G S S S

é ù¢ê úë ûl =-
¢t

  [35]

where primes denote differentiation with respect to S.
The characterization of the equilibrium points, including Eq. [35], 

was observed earlier by Nieber et al. (2005) and Sander et al. (2008).
Thus when l > lc, TWs can leave ST only in an oscillatory 

way, yielding solutions with overshoot in the original variables. 
When l < lc, a trajectory can go (at least in theory) at most a 
finite number of times around the point ET. In the computations, 
we observed always monotonic behavior when l < lc.

Because EB is a saddle, it is practically impossible to find a tra-
jectory that reaches EB as h ® ¥. For this reason, we reversed the 
direction of the trajectories by setting x = −h . In terms of x, the 
trajectory runs from EB, with x = −¥, to ET, with x = ¥. Reversing 
the direction also changes the sign of the eigenvalues. Thus in terms 
of x, ET is a stable spiral when l > lc and a stable node when l < lc. 
To compute the reversed trajectory, the direction of the eigenvector 
corresponding to the positive eigenvalue at EB (x = −¥) is com-
puted. Along this direction, a point is chosen sufficiently close to 
EB as a starting point for the computation: i.e., as initial conditions 
for the system Eq. [30]. The reversed situation is sketched in Fig. 10.

According to Cuesta et al. (2000), van Duijn et al. (2018) 
proved the existence of a connecting trajectory (orbit) for each 
l > 0 and for general functions t(S). The qualitative properties 
of the corresponding saturation depend critically on the choice of 
SB and ST and on the dynamic capillarity coefficient lt(S). The 
main results are the following:

Let 0 < SB < ST < Sm and distinguish the cases (van Duijn 
et al., 2018)

( ) ( )m

0
d  in Class A

S
S St <¥ tò

( ) ( )m

0
d  in Class B

S
S St =¥ tò  

A. For a given t(S) in Class A, introduce the function (van Duijn 
et al., 2018)

( ) ( ) ( )m

B
B T B T, ,; d

S

S
G S f SS S SS S =b ò   [36]

and the saturation Sb, defined by (van Duijn et al., 2018)

( ) ( )
B

B T; 0, d
S

S
G S f S SS Sb =ò   [37]

The proportion of the function G implies that for each fixed SB,

( )B T B, 0S S S= <b

( )B T m, 0S S S= >b

and b(SB,ST) increases monotonically with ST. Hence there exists 
a unique value of ST = ST*, depending on SB, such that b(SB,ST) = 
0. Thus

( ) ( )B T T T B, 0 for *S S S S Sb < <   [38a]

( ) ( )B T T T B, 0 for *S S S S Sb > >   [38b]

Typical behavior of b is shown in Fig. 9.
Similarly, the saturation Sb depends on SB and ST as well. 

From Fig. 9, we can see that ST < Sb < Sm, and Sb ® SB as ST ® 
SB, and Sb ® Sm as ST ® ST*(SB).

Thus the following holds:
The maximal saturation overshoot increases with the capil-

larity constant l such that:
a1.  If SB and ST are such that b(SB,ST) < 0, i.e., ST < ST*(SB), 

then the saturation overshoot remains bounded away 
from the maximal value Sm no matter how large l. More 
precisely, if ST < ST*(SB), then S(h) < Sb < Sm for h Î R 
and for all l > 0.

Fig. 10. Sketch of u–S trajectory in reversed direction x = −h = ct − x 
when l > lc. Line L coincides with the direction of the eigenvector 
corresponding to the positive eigenvalues at EB. The arrow indicates 
the direction of increasing x.
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a2.  If SB and ST are such that b(SB,ST) > 0, i.e., ST > ST*(SB), 
then there exists a second critical value of l, l* > lc, such 
that if l < l*, the saturation does not reach the maximum 
value Sm, and S(h) < Sm for h Î R; if l > l*, the saturation 
has an overshoot with a plateau at the maximal value Sm.

Both Cases a1 and a2 are sketched in Fig. 11.
B. For a given t(S) in Class B, the following holds. Again, the 

maximal saturation overshoot increases when the capillarity 
constant l increases, but S(h) < Sb < Sm for h Î R and for all 
l > 0. Here Sb is again given by Eq. [37].

This inequality may come as a surprise because t(S) in Class 
B means that t(S) has a singularity at S = Sm. Thus one expects a 
strong effect of the dynamic capillarity term at S = Sm. However, 
for the function b(SB,ST), with t(S) from Class B, b(SB,ST) = −¥ 
for each SB < ST < Sm.

So loosely speaking, one is always in the situation described 
by Case a1 for any ST < Sm.

 6Results and Discussion
Growth of Saturation Overshoot

As explained above, the growth of saturation overshoot was 
influenced by both the functional form of t(S) and the value of l. 
We solved the full equations accounting for various combinations 
of different l values and t(S) forms. The computed saturation pro-
files at three different time intervals are shown in Fig. 12. Figures 
12a and 12b show the solutions obtained with the functional form 
t1(S) and values l = 50 and l = 100, respectively. The saturation 
overshoot obtained with l = 50 reaches a fixed shape at t1 = 1000, 
while the overshoot obtained with l = 100 still grows slightly at 
t3 = 3000. Figure 12c shows the solution obtained with the func-
tional form t4(S) and l = 100. The overshoot is still far from the 
fixed shape at t3 = 3000. These behaviors indicate that the valid 

distance of the traveling wave solution varies depending on the 
functional forms and values of the dynamic capillarity coefficient.

Influence of Different Expressions for the 
Capillarity Coefficient

The traveling wave Eq. [30–32] were solved numerically using 
MATLAB (2016). As shown by Eq. [35], the critical value lc depends 
on the functional form of t(S). Corresponding to the expressions in 
Table 2, we have the values of lc listed in Table 3 for fixed ST = 0.33. 
The resulting u–S trajectories are shown in Fig. 13. The inset shows 
an enlargement of the curves near ST. The computations are done 
for different values of l. The primary imbibition curve under quasi-
static conditions is shown as the dotted line, while the solid lines with 
different colors represent S–u curves for different values of l. Values 
l = 10 (which is less than lc; see Table 3), 50, and 200 (which are 
both larger than lc) were combined with t1(S), t2(S), and t4(S). For 
t3(S), however, these values do not result in any distinct overshoot 
behavior. Therefore we chose l values of 1000 and 8000 to show dis-
tinctly different saturation overshoot behaviors. The results obtained 
for t1(S) are shown in Fig. 13a. Note that the solution is monotonic 
when l < lc. For l > lc, however, there exists a saturation overshoot 
(being larger for larger l values) along with small saturation oscilla-
tions. For the largest value l = 100, the maximum saturation of Sm 
is reached, and the solution follows the extension of the capillary 
pressure (Eq. [22]). Similarly, for the decreasing t2(S) and increasing 
integrable t3(S), the saturation reaches Sm for larger l values (see Fig. 
13b and 13c). However, in the case of the non-integrable increasing 
t4(S), the saturation has a smooth plateau when close to Sm, but the 
saturation always remains just below Sm.

Correspondence with Experimental Observations
We next perform two sets of calculations using the parameters 

reported by DiCarlo (2004) and Fritz (2012). Their experimental 

Fig. 11. Sketch of saturation profiles: b(SB,ST) < 0 and S(h) < Sb < Sm, for all h Î R no matter how large l > 0 (left); and b(SB,ST) > 0 and there exists a 
saturation overshoot with a plateau at S = Sm when l is sufficiently large (i.e., l > l*) (right). The profiles are normalized such that S(0) = (SB + ST)/2.
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Fig. 12. Saturation profiles at t1 = 1000, t2 = 2000, and t3 = 3000: (a) capillarity coefficient t(S) = 1, dimensionless capillarity coefficient l = 50; (b) 
t(S) = 1, l = 100; (c) t(S) = 1/(1 − S/Sm), l = 100.

Fig. 13. Saturation–pressure difference curves for different forms of the capillarity coefficient t(S): (a) constant t1(S); (b) decreasing t2(S); (c) increas-
ing t3(S); and (d) non-integrable increasing t4(S).
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results can be found in Fig. 1 and 2. As explained above, the func-
tional forms of t(S) influence the traveling wave behavior. Here 
we show only the results of the cases obtained with constant t, i.e., 
the function t1(S).

As shown by Eq. [35], the critical value lc depends on the 
values of ST and SB. Obviously, there exists a surface to show the 
relationships among lc, ST, and SB. Figures 14a and 14b show 
the ST–SB–lc surfaces for the two experiments. The value of SB 
is always smaller or equal to ST, so that the surfaces are located in 

the region SB £ ST. As can be seen, the shapes of surfaces obtained 
with the two sets of data are quite similar.

There exist three characteristics for the ST–SB–lc relationship:
1. The values of lc increase dramatically when SB ® ST and/or 

ST ® Sm, approaching infinity.
2. The values of lc increase with decreasing ST values.
3. However, there is no distinct correlation between lc and SB 

when SB is much smaller than ST.

We can interpret these findings into experimental behaviors 
in the following:
1. When the value of initial saturation (SB) is quite close to the 

inlet saturation value (ST), there exists no saturation over-
shoot (i.e., lc goes to the infinity). Also, the saturation profile 
is monotonic when the inflow rate is close to the saturated 
conductivity (see the curve for the 11.8 cm/min experiment 
in Fig. 1).

2. It is more probable to obtain saturation overshoot for larger 
inflow rates (means lc will be smaller). This explains the obser-
vation in DiCarlo’s work that the saturation overshoot is larger 
for larger inflow rates.

Next, we calculate the values of ST* and Sb for the two experi-
ments. The results are shown in Table 4.

Based on the traveling wave solution, the saturation is always 
smaller than Sb when ST < ST*, while the saturation approaches 
Sm when ST ³ ST* (see Cases a1 and a2 and Fig. 11).

In DiCarlo’s work, the values of Sb can be calculated for 
the two smallest inflow rates. The values are consistent with the 
maximum saturation value of overshoot. For the large inf low 
rates, the traveling wave analysis indicates that the saturation 
overshoot is close to Sm. As explained, the valid distance of the 

Fig. 14. The ST–SB–lc surfaces obtained with the experimental parameters reported by (a) Fritz (2012) and (b) DiCarlo (2004).

Table 4. The calculated values of Sb (Eq. [37]) and ST* (Eq. [38]) based 
on the parameters reported by DiCarlo (2004) and Fritz (2012).

Experiments† Traveling wave‡

Flow rate Sinlet Sovershoot ST ST* SB Sb
cm/min

DiCarlo (2004)

8 ´ 10−4 0.17 – 0.04 0.15 0.01 0.09

0.0079 0.17 0.28 0.08 0.01 0.35

0.079 0.26 0.67 0.18 0.01 –

0.79 0.38 0.82 0.40 0.01 –

7.9 0.78 0.92 0.84 0.01 –

11.8 0.96 – 0.95 0.01 –

Fritz (2012)

0.26 0.33 0.74 0.33 0.09 0.01 –

0.26 0.33 0.50 0.33 0.17 0.03 –

0.26 0.33 – 0.33 0.34 0.10 0.89

†  Sinlet, saturation at the inlet in the experiments; Sovershoot, maximum satura-
tion of overshoot in the experiments.

‡ ST, inflow saturation; S B, initial saturation. 
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traveling wave indeed varies for different heights of saturation 
overshoot. Therefore, it is reasonable that the higher overshoot 
still grows to reach Sm.

Including hysteresis in capillary pressure and relative per-
meability has a significant impact on numerical solutions of 
full equations. Detailed numerical simulations of full equations 
including capillary and permeability hysteresis for constant t can 
be found in Zhuang (2017). Theoretically, there are only partial 
results for the case of combined hysteresis in the relative permeabil-
ity and the capillary pressure. Having only hysteresis in capillary 
pressure does not affect the overshoot in essence, since the system 
will be in imbibition mode. For a constant t value, traveling wave 
analysis including capillary hysteresis has been reported by Mitra 
and van Duijn (2018).

 6Summary and Conclusions
We performed traveling wave analysis of water infiltration 

into relatively dry soil. Based on the literature overview, we con-
sidered four different expressions to specify the dependence of 
the dynamic capillarity coefficient on the saturation: constant 
t1(S), decreasing t2(S), increasing t3(S), and non-integrable 
increasing t4(S).

The analytical results have shown that there exists a critical 
value lc for the dynamic capillarity coefficient; there are no oscilla-
tions when t is smaller than the critical value lc. This value depends 
on the functional forms of t, the inlet saturation ST, and the initial 
saturation SB. There exist explicit upper bounds of the saturation 
overshoot. We have extended the definition of capillary pressure at 
the maximum saturation to prevent saturation from exceeding unity. 
This may result in a saturation plateau for large t values. However, 
the plateau disappears when t(S) is singular at the maximum satura-
tion [e.g., for non-integrable functions such as t4(S)].

We have compared these findings with experimental observa-
tions. We calculated the  ST–SB–lc relationship and upper bounds 
of overshoot using the parameters reported by DiCarlo (2004) and 
Fritz (2012). The value of lc was found to increase dramatically 
when SB is close to ST, and/or ST is close to the maximum water 
saturation, approaching infinity. The values of lc increase when ST 
values decrease. These findings are consistent with experimental 
observations. This is the first time that such a study of traveling 
wave analysis of this problem has been performed.

In this study, we have disregarded the hysteresis in the cap-
illary pressure and the relative permeability; only the primary 
imbibition curves for capillary pressure and relative permeability 
were used. In a full analysis of the experiments, hysteretic effects 
must be included as well.
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